duality

1. Linear matroids as matroids of subspaces.

Let A be a $d \times n$ matrix of rank d. Prove that the linear matroid of the columns of A equals the matroid of the subspace $V=\operatorname{rowspace}(A) \subseteq \mathbb{R}^{n}$. More explicitly, for a d-subset $B \subseteq[n]$:
(the cols. $B \subset[n]$ of A are a basis for $\left.\mathbb{R}^{d}\right) \Longleftrightarrow V \cap \mathbb{R}^{[n]-B}=0 \quad \Longleftrightarrow \quad V+\mathbb{R}^{[n]-B}=\mathbb{R}^{n}$.
2. Matroid duality generalizes orthogonality of subspaces

If a subspace $V \subseteq \mathbb{R}^{n}$ has matroid M, the orthogonal subspace $V^{\perp} \subseteq \mathbb{R}^{n}$ has matroid M^{*}.
3. Matroid duality generalizes duality of planar graphs

If a connected planar graph G has matroid M, its dual graph has matroid M^{*}. Hints:
(a) Let G be a connected plane graph and G^{*} its dual. Using the language of graph theory, describe the...
i. bases of G.
ii. independent sets of G.
iii. spanning sets of G. (sets that contain a basis)
iv. circuits of G. (minimal sets that are not independent)
v. hyperplanes of G. (maximal sets that are not spanning)
(b) Prove that S is a circuit in G if and only if $E-S$ is a hyperplane in G^{*}.
(c) Conclude that S is a basis in G if and only if $E-S$ is a basis in G^{*}.

technical exercises

1. Faces of products, faces of faces.

Let P, Q, R, F be polytopes.
(a) If F is a face of $P \times Q$, then $F=G \times H$ for some face G of P and some face H of Q.
(b) If R is a face of Q and Q is a face of P, then R is a face of P.
2. The matroid of bases of minimum weight. Let $M=(E, \mathcal{B})$ be a matroid and let $w: E \rightarrow \mathbb{R}$ be a weight function on E. For each real number r, let $E_{r}=\{e \in E \mid w(e) \leq r\}$. Notice that there are only finitely many different sets E_{r}; let's call them $\emptyset=S_{0} \subset S_{1} \subset \cdots \subset S_{k} \subset S_{k+1}=E$. Prove that

$$
M_{w}=\bigoplus_{i=0}^{k} M\left[S_{i}, S_{i+1}\right]
$$

additional challenges

1. An unexpected duality.

Why is the matroid polytope of the complete graph K_{4} (or, equivalently, of the root system A_{3} of problem 1 in exercise sheet 1) self-dual?

2. Matroids from tilings.

You are given an equilateral triangular board of size n divided into little unit triangles, and tiles which are little $60^{\circ}-120^{\circ}$ unit rhombi. Notice that it is impossible to tile the board with the given tiles, because the board contains $\binom{n+1}{2}$ triangles facing up and $\binom{n}{2}$ facing down, and each unit rhombus must cover one triangle of each kind.

However, if you punch $\binom{n+1}{2}-\binom{n}{2}=n$ unit triangular holes, you may (or may not) be able to tile the resulting board. If it is possible to tile it, we will call the set of n holes good. The picture shows a good set of 4 holes, and a corresponding tiling.
Prove that the good sets of holes are the bases of a matroid.

