federico ardila

duality

1. Linear matroids as matroids of subspaces.

Let A be a $d \times n$ matrix of rank d. Prove that the linear matroid of the columns of A equals the matroid of the subspace V=rowspace $(A) \subseteq \mathbb{R}^n$. More explicitly, for a d-subset $B \subseteq [n]$:

(the cols. $B \subset [n]$ of A are a basis for \mathbb{R}^d) $\iff V \cap \mathbb{R}^{[n]-B} = 0 \iff V + \mathbb{R}^{[n]-B} = \mathbb{R}^n$.

- 2. Matroid duality generalizes orthogonality of subspaces If a subspace $V \subseteq \mathbb{R}^n$ has matroid M, the orthogonal subspace $V^{\perp} \subseteq \mathbb{R}^n$ has matroid M^* .
- 3. Matroid duality generalizes duality of planar graphs

If a connected planar graph G has matroid M, its dual graph has matroid M^* . Hints:

- (a) Let G be a connected plane graph and G^* its dual. Using the language of graph theory, describe the...
 - i. bases of G.
 - ii. independent sets of G.
 - iii. spanning sets of G. (sets that contain a basis)
 - iv. circuits of G. (minimal sets that are not independent)
 - v. hyperplanes of G. (maximal sets that are not spanning)
- (b) Prove that S is a circuit in G if and only if E S is a hyperplane in G^* .
- (c) Conclude that S is a basis in G if and only if E S is a basis in G^* .

technical exercises

1. Faces of products, faces of faces.

Let P, Q, R, F be polytopes.

- (a) If F is a face of $P \times Q$, then $F = G \times H$ for some face G of P and some face H of Q.
- (b) If R is a face of Q and Q is a face of P, then R is a face of P.
- 2. The matroid of bases of minimum weight. Let $M = (E, \mathcal{B})$ be a matroid and let $w : E \to \mathbb{R}$ be a weight function on E. For each real number r, let $E_r = \{e \in E \mid w(e) \leq r\}$. Notice that there are only finitely many different sets E_r ; let's call them $\emptyset = S_0 \subset S_1 \subset \cdots \subset S_k \subset S_{k+1} = E$. Prove that

$$M_w = \bigoplus_{i=0}^k M[S_i, S_{i+1}]$$

additional challenges

 $1. \ \mbox{An unexpected duality.}$

Why is the matroid polytope of the complete graph K_4 (or, equivalently, of the root system A_3 of problem 1 in exercise sheet 1) self-dual?

2. Matroids from tilings.

You are given an equilateral triangular board of size n divided into little unit triangles, and tiles which are little $60^{\circ} - 120^{\circ}$ unit rhombi. Notice that it is impossible to tile the board with the given tiles, because the board contains $\binom{n+1}{2}$ triangles facing up and $\binom{n}{2}$ facing down, and each unit rhombus must cover one triangle of each kind.

However, if you punch $\binom{n+1}{2} - \binom{n}{2} = n$ unit triangular holes, you may (or may not) be able to tile the resulting board. If it is possible to tile it, we will call the set of *n* holes *good*. The picture shows a good set of 4 holes, and a corresponding tiling.

Prove that the good sets of holes are the bases of a matroid.