federico ardila

computational exercises

- 1. The root system A_3 or the complete graph K_4 . Let $A_3 = \{e_i - e_j : 1 \le i < j \le 4\}$.
 - (a) Describe all the flats of the matroid of A_3 .
 - (b) Draw the lattice of flats.
 - (c) Find the Möbius function.
 - (d) Compute the characteristic polynomial.
- 2. Combinatorial interpretations of the characteristic polynomial. Consider our running example, which has $\chi(q) = q^3 - 4q^2 + 5q - 2$. Verify that
 - (a) the number of proper q-colorings of the graph is $\chi(q)$,
 - (b) the number of regions of the real arrangement is $|\chi(-1)|$, and
 - (c) the number of points not on the \mathbb{F}_q -arrangement is $\chi(q)$.
- 3. The root system A_{n-1} or the complete graph K_n . Compute the characteristic polynomial of $A_{n-1} = \{e_i - e_j : 1 \le i < j \le n\}$.
- 4. The root system D_n.
 Compute the characteristic polynomial of D_n = {e_i − e_j, e_i + e_j : 1 ≤ i < j ≤ n}.
- 5. Generic arrangements.

Consider N hyperplanes in general position in \mathbb{R}^n . How many regions do they form in \mathbb{R}^n ?

conceptual exercises

- 1. Counting proper colorings and acyclic orientations of graphs. Let G be a graph and M be its graphical matroid. Let c be the number of connected components of G.
 - (a) Let q be a positive integer. Prove that $q^c \chi_M(q)$ is the number of ways of coloring the vertices of G with q given colors in such a way that neighboring vertices have different colors.
 - (b) Prove that $|\chi_M(-1)|$ is the number of ways of orienting each edge of G in such a way that no directed cycles are formed.
- $2. \ \mbox{The Tutte polynomial}$

The Tutte polynomial of a matroid M is $T_M(x,y) = \sum_{A \subseteq E} (x-1)^{r(E)-r(A)} (y-1)^{|A|-r(A)}.$

- (a) Prove that $M \mapsto T_M(x, y)$ is the unique function from the set of all matroids to $\mathbb{Z}[x, y]$ satisfying all of the following conditions:
 - i. $M \cong N \Longrightarrow T_M(x, y) = T_N(x, y)$.
 - ii. $T_{coloop}(x, y) = x$ and $T_{loop}(x, y) = y$.
 - iii. $T_M(x,y) = T_{M \setminus e}(x,y) + T_{M/e}(x,y)$ if e is not a loop or a coloop.
 - iv. $T_M(x,y) = T_e(x,y)T_{M\setminus e}(x,y)$ if e is a loop or a coloop.

(A function satisfying i, iii, and iv is called a Tutte-Grothendieck invariant. One can show that all Tutte-Grothendieck invariants are specializations of the Tutte polynomial.)

(b) Show that the characteristic polynomial of a matroid is a specialization of the Tutte polynomial.