Algebraic and combinatorial aspects of face numbers and Stanley-Reisner rings

Exercise sheet - Day 1

Exercise 1

[The dual of a polytope]
Recall that the dual of a polytope $P \subseteq \mathbb{R}^{d}$ is the set $P^{*}:=\left\{p \in \mathbb{R}^{d}:\langle x, p\rangle \leq 1\right.$ for every $x \in$ $P\}$.
i. Prove that P^{*} is a polytope if and only if $0 \in \operatorname{int}(P)$.
ii. Compute the vertices of the dual of $P=\operatorname{conv}\left(\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right)\right)$.
iii. Prove that the face lattice of P^{*} is isomorphic to the face lattice of P with all relations reversed.

Exercise 2

[Cyclic polytope]
Recall that a d-dimensional cyclic polytope $C(n, d)$ is the convex hull of n distinct points on the monoment curve $\left\{q_{d}(t):=\left(t, t^{2}, \ldots, t^{d}\right): t \in \mathbb{R}\right\}$. Prove that $C(n, d)$ satisfies the following properties:
i. $\operatorname{dim}(C(n, d))=d$.
ii. $C(n, d)$ is $\left\lfloor\frac{d}{2}\right\rfloor$-neighborly, i.e., $f_{i}(C(n, d))=\binom{n}{k}$ for every $0 \leq k \leq\left\lfloor\frac{d}{2}\right\rfloor$.
iii. (Gale evenness criterion). For every set $V_{d}=\left\{t_{i_{1}}, \ldots, t_{i_{d}}\right\}$ the set $\left\{q_{d}\left(t_{i_{1}}\right), \ldots, q_{d}\left(t_{i_{d}}\right)\right\}$ is the set of vertices of a facet F of $C(n, d)$ if and only if for every two points $t_{i}<t_{j} \in V \backslash V_{d}$ the number $\left|V_{d} \cap\left\{t_{i}, t_{i+1} \ldots, t_{j}\right\}\right|$ is even. Conclude that the face lattice of $C(n, d)$ does not depend on the choice of points on the moment curve.
iv. Derive a closed formula for the number $f_{d-1}(C(n, d))$.

Exercise 3

i. Show that the set of f-vectors of 3-polytopes P is given by $C \cap \mathbb{Z}^{3}$, with $C \subseteq \mathbb{R}^{2}$ a 2-dimensional convex cone.
Hint: Reduce the problem to the study of pairs $\left(f_{0}(P), f_{2}(P)\right)$.
ii. Compute $\frac{1}{2}(f(C(5,4))+f(C(9,4)))$. Conclude that a description for the set of f-vectors of 4 -polytopes as in the 3 -dimensional case is not possible.

Exercise 4

[Complicated numbers but simple polytopes]
Let $P \subseteq \mathbb{R}^{d}$ be a simple polytope and $\ell: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a generic linear functional that is injective on the vertices. Let $h_{i}^{\ell}(P)$ be the number of vertices of indegree i in the graph of P oriented in a way such that $u \rightarrow v$ if and only if $\ell(u)<\ell(v)$.
i. Let $v_{0} \in P$ be a fixed vertex. Prove that if $\ell(u)<\ell\left(v_{0}\right)$ for every edge $\left\{u, v_{0}\right\} \in P$, then $\ell(u)<\ell\left(v_{0}\right)$ for every vertex u other than v_{0}.
ii. Use i. to conclude that

$$
\sum_{k=0}^{d} f_{k}(P) x^{k}=\sum_{i=0}^{d} h_{i}^{\ell}(P)(x+1)^{i}
$$

In particular $h^{\ell}(P)$ does not depend on ℓ and we can define $h(P)=h^{\ell}(P)$ for some generic linear functional ℓ.
iii. Compute $h_{0}(P), h_{1}(P)$ and $h_{d}(P)$ as functions of the f-vector of P.

Exercise 5

[The h-numbers of a facet]
Let $P \subseteq \mathbb{R}^{d}$ be a simple polytope and F be a facet of P.
i. Show that $h_{i}(P) \geq h_{i-1}(F)$ for every $i=1, \ldots, d-1$.
ii. Show that

$$
\sum_{F \text { facet of } P} h_{i}(F)=(i+1) h_{i+1}(P)+(d-i) h_{i}(P)
$$

for every $i=0, \ldots, d-1$.
Hint: It is convenient to fix an orientation of the graph of P induced by a generic linear functional as in the lecture. Then $h_{i}(P)=h_{i}^{\ell}(P)=\mid\{v: \operatorname{in}-\operatorname{deg}(v)=i\}$.

Exercise 6
[h-vectors of V.I.P.s, Very-Important-Polytopes]
Compute the numbers $h_{i}(P)$ when:
i. $P=[-1,1]^{d}$, i.e., P is the d-dimensional cube.
ii. $P=\operatorname{conv}\left(\pm e_{1}, \ldots, \pm e_{d}\right)$, with e_{1}, \ldots, e_{d}, i.e., P is the d-dimensional cross-polytope.
iii. $P=C(n, d)$, i.e., P is a d-dimensional cyclic polytope on n vertices.
iv. $P=C(n, d)^{*}$.
v. $P=\operatorname{conv}(\{(\pi(1), \ldots, \pi(d)): \pi$ is a permutation on $[d]\})$, i.e., P is the $(d-1)$-dimensional permutahedron.
vi. $P=\Delta_{i_{1}} \times \cdots \times \Delta_{i_{k}}$ for $0 \leq i_{1} \leq \cdots \leq i_{k}$ and Δ_{j} the j-dimensional simplex.

