
Algebraic and combinatorial aspects of face numbers and
Stanley-Reisner rings

Exercise sheet – Day 1

Exercise 1 [The dual of a polytope]
Recall that the dual of a polytope P ⊆ Rd is the set P ∗ := {p ∈ Rd : 〈x, p〉 ≤ 1 for every x ∈
P}.

i. Prove that P ∗ is a polytope if and only if 0 ∈ int(P ).

ii. Compute the vertices of the dual of P = conv
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iii. Prove that the face lattice of P ∗ is isomorphic to the face lattice of P with all relations
reversed.

Exercise 2 [Cyclic polytope]
Recall that a d-dimensional cyclic polytope C(n, d) is the convex hull of n distinct points
on the monoment curve {qd(t) := (t, t2, . . . , td) : t ∈ R}. Prove that C(n, d) satisfies the
following properties:

i. dim(C(n, d)) = d.

ii. C(n, d) is bd
2
c-neighborly, i.e., fi(C(n, d)) =

(
n
k

)
for every 0 ≤ k ≤ bd

2
c.

iii. (Gale evenness criterion). For every set Vd = {ti1 , . . . , tid} the set {qd(ti1), . . . , qd(tid)} is
the set of vertices of a facet F of C(n, d) if and only if for every two points ti < tj ∈ V \Vd
the number |Vd ∩ {ti, ti+1 . . . , tj}| is even. Conclude that the face lattice of C(n, d) does
not depend on the choice of points on the moment curve.

iv. Derive a closed formula for the number fd−1(C(n, d)).

Exercise 3 [f -vectors of 3-polytopes]

i. Show that the set of f -vectors of 3-polytopes P is given by C ∩ Z3, with C ⊆ R2 a
2-dimensional convex cone.
Hint: Reduce the problem to the study of pairs (f0(P ), f2(P )).

ii. Compute 1
2
(f(C(5, 4))+f(C(9, 4))). Conclude that a description for the set of f -vectors

of 4-polytopes as in the 3-dimensional case is not possible.
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Exercise 4 [Complicated numbers but simple polytopes]
Let P ⊆ Rd be a simple polytope and ` : Rd → R be a generic linear functional that is
injective on the vertices. Let h`i(P ) be the number of vertices of indegree i in the graph of
P oriented in a way such that u→ v if and only if `(u) < `(v).

i. Let v0 ∈ P be a fixed vertex. Prove that if `(u) < `(v0) for every edge {u, v0} ∈ P ,
then `(u) < `(v0) for every vertex u other than v0.

ii. Use i. to conclude that

d∑
k=0

fk(P )xk =
d∑

i=0

h`i(P )(x+ 1)i.

In particular h`(P ) does not depend on ` and we can define h(P ) = h`(P ) for some
generic linear functional `.

iii. Compute h0(P ), h1(P ) and hd(P ) as functions of the f -vector of P .

Exercise 5 [The h-numbers of a facet]
Let P ⊆ Rd be a simple polytope and F be a facet of P .

i. Show that hi(P ) ≥ hi−1(F ) for every i = 1, . . . , d− 1.

ii. Show that ∑
F facet of P

hi(F ) = (i+ 1)hi+1(P ) + (d− i)hi(P ),

for every i = 0, . . . , d− 1.

Hint: It is convenient to fix an orientation of the graph of P induced by a generic linear
functional as in the lecture. Then hi(P ) = h`i(P ) = |{v : in-deg(v) = i}.

Exercise 6 [h-vectors of V.I.P.s, Very-Important-Polytopes]
Compute the numbers hi(P ) when:

i. P = [−1, 1]d, i.e., P is the d-dimensional cube.

ii. P = conv(±e1, . . . ,±ed), with e1, . . . , ed, i.e., P is the d-dimensional cross-polytope.

iii. P = C(n, d), i.e., P is a d-dimensional cyclic polytope on n vertices.

iv. P = C(n, d)∗.

v. P = conv({(π(1), . . . , π(d)) : π is a permutation on [d]}), i.e., P is the (d−1)-dimensional
permutahedron.

vi. P = ∆i1 × · · · ×∆ik for 0 ≤ i1 ≤ · · · ≤ ik and ∆j the j-dimensional simplex.
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