Algebraic and combinatorial aspects of face numbers and Stanley-Reisner rings

Exercise sheet - Day 2

Exercise 1

[Kind-Kleinschmidt criterion for an l.s.o.p.] Let Δ be a ($d-1$)-dimensional simplicial complex on $[n]$. For a linear form $y=\sum_{i=1}^{n} c_{i} x_{i} \in$ $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and a face $F \in \Delta$ we define the restriction of y to F to be $\left.y\right|_{F}=\sum_{i \in F} c_{i} x_{i}$.
i. Prove that linear forms $y_{1}, \ldots, y_{d} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ are an l.s.o.p. for $\mathbb{K}[\Delta]$ if and only if $\left.y_{1}\right|_{F}, \ldots,\left.y_{d}\right|_{F}$ span an $|F|$-dimensional vector space for every face $F \in \Delta$.
ii. Use the criterion above to show that there is no l.s.o.p. for the boundary complex of a d-simplex (that is, $\partial \Delta_{d}=2^{d+1} \backslash[d+1]$) with coefficients in $\{0,1\}$.

Exercise 2

[Prime decomposition and Alexander duality]
Let Δ be a simplicial complex on $[n]$.
i. Show that

$$
I_{\Delta}=\bigcap_{S \in \mathcal{F}(\Delta)}\left\langle x_{i}: i \in[n] \backslash S\right\rangle,
$$

where $\mathcal{F}(\Delta)$ is the set of facets of Δ.
ii. Assume $I_{\Delta}=\left\langle\mathrm{x}^{\alpha_{1}}, \ldots, \mathrm{x}^{\alpha_{g}}\right\rangle$, where $\mathrm{x}^{\alpha_{i}}=\prod_{j=1}^{n} x^{\alpha_{i, j}}$ for some $\alpha_{i} \in\{0,1\}^{n}$. We define the Alexander dual of I_{Δ} to be

$$
I_{\Delta}^{*}=\bigcap_{i=1}^{g}\left\langle x_{j}: \alpha_{i, j}=1\right\rangle .
$$

Observe that I_{Δ}^{*} is again a squarefree monomial ideal and describe its minimal generating set.
iii. Prove that $\left(I_{\Delta}^{*}\right)^{*}=I_{\Delta}$.
iv. Denote by Δ^{*} the simplicial complex such that $I_{\Delta^{*}}=I_{\Delta}^{*}$. Find a 2-dimensional simplicial complex Δ such that $\Delta \cong \Delta^{*}$.

Exercise 3

Let Δ be a $(d-1)$-dimensional simplicial complex.
i. Show that

$$
F_{\mathbb{K}[\Delta]}(t)=\sum_{i=0}^{d} f_{i-1}(\Delta) \frac{t^{i}}{(1-t)^{i}} .
$$

ii. Is $F(t)=\left(1+2 t-t^{2}\right) /(1-t)^{2}$ the Hilbert series of a Stanley-Reisner ring? Is it the Hilbert series of a Stanley-Reisner ring of a CM complex?

Exercise 4

[Stanley trick]
Let $f(\Delta)$ be the f-vector of a simplicial complex Δ.
i. Prove that

$$
h_{i}(\Delta)=\sum_{j=0}^{i}(-1)^{i-j}\binom{d-j}{d-i} f_{j-1}(\Delta) \text { and } f_{i-1}(\Delta)=\sum_{j=0}^{i}\binom{d-j}{d-i} h_{j}(\Delta) .
$$

ii. Show that $h(\Delta)$ can be computed via the following Pascal-like triangle:

In words, the j-th entry in the i-th row of the triangle is given by the difference between the j-th and the $(j-1)$-th entries in the $(i-1)$-th row.

Exercise 5

[Injectivity of the multiplication map]
Let A be a standard graded \mathbb{K}-algebra and let $y \in A_{1}$ be such that the multiplication map $\cdot y: A_{i} \rightarrow A_{i+1}$ is injective.
i. Show that $F_{A / y A}(t)=(1-t) F_{A}(t)$.
ii. Conclude that if y_{1}, \ldots, y_{r} is an l.s.o.p. for $\mathbb{K}[\Delta]$ then A is Cohen-Macaulay if and only if $F_{A /\left(y_{1}, \ldots, y_{r}\right) A}(t)=(1-t)^{r} F_{A}(t)$.

Exercise 6

[Shellability]
Let Δ be a pure simplicial complex, where pure means that all facets have the same dimension.
i. Show that the following conditions are equivalent: There exists a linear ordering F_{1}, \ldots, F_{m} of the facets of Δ such that
(a) $\left\langle F_{i}\right\rangle \cap\left\langle F_{1}, \ldots, F_{i-1}\right\rangle$ is generated by a non-empty set of maximal proper faces of $\left\langle F_{i}\right\rangle$ for all $2 \leq i \leq m$. (Here, $\left\langle F_{1}, \ldots, F_{i-1}\right\rangle$ denotes the smallest simplicial complex containing F_{1}, \ldots, F_{i-1}.)
(b) the set $\left\{F: F \in\left\langle F_{1}, \ldots, F_{i}\right\rangle, F \notin\left\langle F_{1}, \ldots, F_{i-1}\right\rangle\right\}$ has a unique minimal element $R\left(F_{i}\right)$ for all $2 \leq i \leq m$.
(c) for all $i, j, 1 \leq j<i \leq m$, there exist some $v \in F_{i} \backslash F_{j}$ and some $k \in\{1,2, \ldots, i-1\}$ with $F_{i} \backslash F_{k}=\{v\}$.

If one resp. all of these conditions hold, then Δ is called shellable.
ii. Show that if Δ is shellable, then so is $\mathrm{lk}_{\Delta}(F)$ for all $F \in \Delta$.
iii. Show that a shellable simplicial complex is Cohen-Macaulay over any field. You can use (without proof) that any shellable simplicial complex Δ is homotopy equivalent to a wedge of $h_{\operatorname{dim} \Delta+1}(\Delta)$ many $\operatorname{dim} \Delta$-dimensional spheres.
iv. Show that for a shellable simplicial complex Δ we have

$$
h_{i}(\Delta)=\#\{F \in \Delta: \# R(F)=i\} \quad \text { for } i \geq 1
$$

Exercise 7

[Noether normalization]
Let A be a standard graded \mathbb{K}-algebra. Prove that there exists a number $r \geq 0$ and r homogeneous elements y_{1}, \ldots, y_{r} such that:
i. y_{1}, \ldots, y_{r} are algebraically independent over \mathbb{K}, i.e., if $f\left(y_{1}, \ldots, y_{r}\right)$ for some $f \in$ $\mathbb{K}\left[x_{1}, \ldots, x_{r}\right]$ then $f=0$.
ii. A is a finitely generated $\mathbb{K}\left[y_{1}, \ldots, y_{r}\right]$-module, i.e., there exists a finite set B of homogeneous elements of A such that $A=\sum_{b \in B} b \cdot \mathbb{K}\left[y_{1}, \ldots, y_{r}\right]$.

