Algebraic and combinatorial aspects of face numbers and Stanley-Reisner rings

Exercise sheet - Day 2

Exercise 1 [Kind-Kleinschmidt criterion for an l.s.o.p.] Let Δ be a (d-1)-dimensional simplicial complex on [n]. For a linear form $y = \sum_{i=1}^{n} c_i x_i \in \mathbb{K}[x_1, \ldots, x_n]$ and a face $F \in \Delta$ we define the restriction of y to F to be $y|_F = \sum_{i \in F} c_i x_i$.

- i. Prove that linear forms $y_1, \ldots, y_d \in \mathbb{K}[x_1, \ldots, x_n]$ are an l.s.o.p. for $\mathbb{K}[\Delta]$ if and only if $y_1|_F, \ldots, y_d|_F$ span an |F|-dimensional vector space for every face $F \in \Delta$.
- ii. Use the criterion above to show that there is no l.s.o.p. for the boundary complex of a d-simplex (that is, $\partial \Delta_d = 2^{d+1} \setminus [d+1]$) with coefficients in $\{0, 1\}$.

Exercise 2

[Prime decomposition and Alexander duality]

Let Δ be a simplicial complex on [n].

i. Show that

$$I_{\Delta} = \bigcap_{S \in \mathcal{F}(\Delta)} \langle x_i : i \in [n] \setminus S \rangle$$

where $\mathcal{F}(\Delta)$ is the set of facets of Δ .

ii. Assume $I_{\Delta} = \langle \mathbf{x}^{\alpha_1}, \dots, \mathbf{x}^{\alpha_g} \rangle$, where $\mathbf{x}^{\alpha_i} = \prod_{j=1}^n x^{\alpha_{i,j}}$ for some $\alpha_i \in \{0,1\}^n$. We define the Alexander dual of I_{Δ} to be

$$I_{\Delta}^* = \bigcap_{i=1}^{g} \left\langle x_j : \alpha_{i,j} = 1 \right\rangle.$$

Observe that I^*_{Δ} is again a squarefree monomial ideal and describe its minimal generating set.

- iii. Prove that $(I_{\Delta}^*)^* = I_{\Delta}$.
- iv. Denote by Δ^* the simplicial complex such that $I_{\Delta^*} = I_{\Delta}^*$. Find a 2-dimensional simplicial complex Δ such that $\Delta \cong \Delta^*$.

Exercise 3

[Hilbert series of Stanley-Reisner rings] Let Δ be a (d-1)-dimensional simplicial complex.

i. Show that

$$F_{\mathbb{K}[\Delta]}(t) = \sum_{i=0}^{d} f_{i-1}(\Delta) \frac{t^i}{(1-t)^i}.$$

ii. Is $F(t) = (1 + 2t - t^2)/(1 - t)^2$ the Hilbert series of a Stanley-Reisner ring? Is it the Hilbert series of a Stanley-Reisner ring of a CM complex?

Exercise 4

Let $f(\Delta)$ be the f-vector of a simplicial complex Δ .

i. Prove that

$$h_i(\Delta) = \sum_{j=0}^{i} (-1)^{i-j} \binom{d-j}{d-i} f_{j-1}(\Delta) \text{ and } f_{i-1}(\Delta) = \sum_{j=0}^{i} \binom{d-j}{d-i} h_j(\Delta).$$

ii. Show that $h(\Delta)$ can be computed via the following Pascal-like triangle:

In words, the *j*-th entry in the *i*-th row of the triangle is given by the difference between the *j*-th and the (j-1)-th entries in the (i-1)-th row.

Exercise 5

[Injectivity of the multiplication map] Let A be a standard graded K-algebra and let $y \in A_1$ be such that the multiplication map $\cdot y: A_i \to A_{i+1}$ is injective.

- i. Show that $F_{A/yA}(t) = (1 t)F_A(t)$.
- ii. Conclude that if y_1, \ldots, y_r is an l.s.o.p. for $\mathbb{K}[\Delta]$ then A is Cohen-Macaulay if and only if $F_{A/(y_1,...,y_r)A}(t) = (1-t)^r F_A(t).$

Exercise 6

[Shellability]

Let Δ be a pure simplicial complex, where pure means that all facets have the same dimension.

i. Show that the following conditions are equivalent: There exists a linear ordering F_1, \ldots, F_m of the facets of Δ such that

[Stanley trick]

- (a) $\langle F_i \rangle \cap \langle F_1, \dots, F_{i-1} \rangle$ is generated by a non-empty set of maximal proper faces of $\langle F_i \rangle$ for all $2 \leq i \leq m$. (Here, $\langle F_1, \dots, F_{i-1} \rangle$ denotes the smallest simplicial complex containing F_1, \dots, F_{i-1} .)
- (b) the set $\{F : F \in \langle F_1, \ldots, F_i \rangle, F \notin \langle F_1, \ldots, F_{i-1} \rangle\}$ has a unique minimal element $R(F_i)$ for all $2 \le i \le m$.
- (c) for all $i, j, 1 \le j < i \le m$, there exist some $v \in F_i \setminus F_j$ and some $k \in \{1, 2, \dots, i-1\}$ with $F_i \setminus F_k = \{v\}$.

If one resp. all of these conditions hold, then Δ is called *shellable*.

- ii. Show that if Δ is shellable, then so is $lk_{\Delta}(F)$ for all $F \in \Delta$.
- iii. Show that a shellable simplicial complex is Cohen-Macaulay over any field. You can use (without proof) that any shellable simplicial complex Δ is homotopy equivalent to a wedge of $h_{\dim \Delta+1}(\Delta)$ many dim Δ -dimensional spheres.
- iv. Show that for a shellable simplicial complex Δ we have

$$h_i(\Delta) = \#\{F \in \Delta : \#R(F) = i\} \quad \text{for } i \ge 1.$$

Exercise 7

[Noether normalization]

Let A be a standard graded K-algebra. Prove that there exists a number $r \ge 0$ and r homogeneous elements y_1, \ldots, y_r such that:

- i. y_1, \ldots, y_r are algebraically independent over \mathbb{K} , i.e., if $f(y_1, \ldots, y_r)$ for some $f \in \mathbb{K}[x_1, \ldots, x_r]$ then f = 0.
- ii. A is a finitely generated $\mathbb{K}[y_1, \ldots, y_r]$ -module, i.e., there exists a finite set B of homogeneous elements of A such that $A = \sum_{b \in B} b \cdot \mathbb{K}[y_1, \ldots, y_r]$.