Algebraic and combinatorial aspects of face numbers and Stanley-Reisner rings

Exercise sheet - Day 3

Exercise 1

[k-binomial representation of a positive integer]
Let $m, k \in \mathbb{Z}_{\geq 0}$.
i. Prove there exists a unique expression of m as

$$
m=\binom{a_{k}}{k}+\binom{a_{k-1}}{k-1}+\cdots+\binom{a_{s}}{s}
$$

with $a_{k}>a_{k-1}>\cdots>a_{s} \geq s \geq 1$.
Let J_{k} be the set of all k-subsets of $\mathbb{Z}_{\geq 0}$ and let $F_{m}=\left\{a_{1}<\cdots<a_{k}\right\}$ be the $(m+1)$-th smallest element of J_{k} in the rev-lex order.
ii. Show that $m=\binom{a_{k}}{k}+\binom{a_{k-1}}{k-1}+\cdots+\binom{a_{1}}{1}$, with $\binom{a_{i}}{i}=0$ if $i>a_{i}$.

Let \mathcal{F} be an initial segment of J_{k}, i.e., \mathcal{F} contains the $|\mathcal{F}|$ smallest elements of J_{k} in the rev-lex order. Set $m+1=|\mathcal{F}|$.
iii. Show that $|\partial \mathcal{F}|=\partial_{k}(m)$.
iv. Show that $\partial \mathcal{F}$ is an initial segment of J_{k-1}.

Exercise 2

i. Show with simple (even 1-dimensional) example that the operation $S_{j}(\Delta)$, introduced in the lecture, depends on the order of facets F_{1}, \ldots, F_{M} of Δ in which it is applied. Do Δ and $S_{j}(\Delta)$ have the same simplicial homology?

Recall that a simplicial complex Δ is shifted if for every $F \in \Delta$ and $j<i$ it follows that $(F \backslash\{i\}) \cup\{j\} \in \Delta$.
ii. Prove that a pure shifted simplicial complex is shellable.

Hint: Consider the lexicographic order on the facets.

Exercise 3
[h-vectors of simplicial polytopes (or not?)]
Decide which of the following integer vectors are h-vectors of simplicial 6-polytopes.
i. $v_{1}=(1,6,18,16,16,18,6,1)$.
ii. $v_{2}=(1,6,15,20,20,15,6,1)$.
iii. $v_{3}=(1,8,9,9,9,9,8,1)$.
iv. $v_{4}=(1,8,9,10,10,9,8,1)$.
v. $v_{5}=(1,8,38,100,100,38,8,1)$.

Exercise 4
Let $I \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be an homogenous ideal.
i. Show that there exists a \mathbb{K}-basis B_{I} for the vector space $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / I$ consisting of monomials and show that B_{I} is a multicomplex.
ii. Conclude that there exists a monomial ideal $J \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / I$ and $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / J$ have the same Hilbert function.

Exercise 5

[Special algebras from special polytopes]
Exhibit 0-dimensional standard graded algebras of the form R / I with I a monomial ideal, whose Hilbert function is the h-vector of the boundary complex of:
i. The 6 -simplex.
ii. The 6-dimensional cross-polytope.
iii. The cyclic polytope $C(10,6)$.

Hint: The h-vectors of the three polytopes above are rather special. Can you think of a corresponding multicomplex and then mod out the complement?

