6/24/19

Geometric and combinatorial aspects of face numbers

Isabella Novik and Hailun Zheng

Day 1 — Infinitesimal Rigidity

A short review:

Let G = (V, E) be a framework in \mathbb{R}^d , where $V = \{v_1, \ldots, v_n\}$. Recall that an *infinitesimal* motion of G is an assignment of vectors $u_1, \ldots, u_n \in \mathbb{R}^d$ such that

$$\langle v_i - v_j, u_i - u_j \rangle = 0 \qquad \forall ij \in E$$

The set of all infinitesimal motions of \mathbb{R}^d is a vector space denoted M(G). Similarly, an *infinitesimal* motion of \mathbb{R}^d is a function $u : \mathbb{R}^d \to \mathbb{R}^d$ such that

$$\langle v - \overline{v}, u(v) - u(\overline{v}) \rangle = 0 \quad \forall v, \overline{v} \in \mathbb{R}^d$$

and the space of infinitesimal motions of \mathbb{R}^d is denoted by $M(\mathbb{R}^d)$.

An infinitesimal motion u_1, \ldots, u_n of G is called *trivial* if there is some infinitesimal motion u of \mathbb{R}^d such that $u_i = u(v_i)$ for all $i \in [n]$. A framework G is *infinitesimally rigid* if it admits only trivial infinitesimal motions.

A new definition: The stress space of G, S(G), is defined as the kernel of the rigidity matrix R(G). In other words, a stress $\lambda = (\lambda_{ij})$ on G is an assignment of numbers λ_{ij} to edges $ij \in E$ such that the following equilibrium conditions hold:

$$\sum_{j:ij\in E} \lambda_{ij}(v_j - v_i) = 0 \quad \forall i \in [n].$$

Exercises

We will now prove several basic results about infinitesimal rigidity and stress spaces.

0. As a warm-up, check that u_1, \ldots, u_n is an infinitesimal motion of G if and only if,

$$\operatorname{proj}_{v_i-v_i}(u_i) = \operatorname{proj}_{v_i-v_i}(u_j) \quad \forall ij \in E,$$

where $\operatorname{proj}_{v}(u)$ is the vector projection of u along v.

- 1. The goal of this problem is to show that dim $M(\mathbb{R}^d) = \binom{d+1}{2}$.
 - (a) Let $v_1, \ldots, v_d, v_{d+1}$ be the vertices of a geometric *d*-dimensional simplex Σ in \mathbb{R}^d and let $G(\Sigma)$ be the framework corresponding to the graph of Σ (in particular, it is a complete graph). Let $u_1, \ldots, u_d, u_{d+1}$ be an infinitesimal motion of $G(\Sigma)$. Show that u_{d+1} is determined by u_1, \ldots, u_d .
 - (b) Use part (a) to prove that dim $M(G(\Sigma)) = {\binom{d+1}{2}}$.

- (c) Show that distinct infinitesimal motions of \mathbb{R}^d induce distinct infinitesimal motions of $G(\Sigma)$, and conclude that $\dim M(\mathbb{R}^d) \leq \dim M(G(\Sigma)) = \binom{d+1}{2}$.
- (d) Compute the dimension of the space of isometries of \mathbb{R}^d (i.e., translations and rotations). Use this fact to show that dim $M(\mathbb{R}^d) \ge \binom{d+1}{2}$. The promised result follows.
- 2. Let G = (V, E) be a framework in \mathbb{R}^d and assume that V affinely spans \mathbb{R}^d . Show that the result of Problem 1 implies the following facts:
 - (a) G is infinitesimally rigid if and only if dim $M(G) = \binom{d+1}{2}$. In this case, every infinitesimal motion of G is determined by its restriction to any d affinely independent joints of G.
 - (b) G is infinitesimally rigid if and only if the rank of the rigidity matrix of G, $\mathcal{R}(G, d)$, is $df_0 \binom{d+1}{2}$.
 - (c) G is infinitesimally rigid if and only if dim $S(G) = f_1 df_0 + {d+1 \choose 2}$.

Here f_0 denotes the number of vertices of G while f_1 denotes the number of edges of G.

- 3. Use Problem 2 to prove the following results.
 - (a) The *Gluing Lemma*: If G = (V, E) and G' = (V', E') are two *d*-dimensional frameworks that have *d* affinely independent joints in common, then the *d*-dimensional framework $G \cup G' = (V \cup V', E \cup E')$ is also infinitesimally rigid.
 - (b) The Cone Lemma: Let G = (V, E) be a framework in $\mathbb{R}^d \times \{0\} \subset \mathbb{R}^{d+1}$ and let $u \in \mathbb{R}^{d+1} \setminus \mathbb{R}^d \times \{0\}$ define G * u := (V', E') to be the cone over G with apex u, that is, $V' = V \cup \{u\}$ and $E' = E \cup \{uv : v \in V\}$. Show that G is infinitesimally rigid in \mathbb{R}^d if and only if G * u is infinitesimally rigid in \mathbb{R}^{d+1} .

Hint: what is the relationship between the stress spaces of G and G * u?

- 4. Let G = ([n], E) be a graph on n vertices (considered as an abstract graph). A map $\psi : [n] \to \mathbb{R}^d$ is called a *d-embedding* of G. We identify the set of all *d*-embeddings of G with \mathbb{R}^{dn} via $\psi \mapsto (v_1, \ldots, v_n) = (\psi(1), \ldots, \psi(n)) \in \mathbb{R}^d \times \ldots \times \mathbb{R}^d \cong \mathbb{R}^{dn}$. Each *d*-embedding ψ of G defines a *d*-dimensional framework whose joints are $\psi(1), \ldots, \psi(n)$ and whose bars are the elements of E. A *d*-embedding of G into \mathbb{R}^d is *infinitesimally rigid (flexible, resp.)* if the corresponding framework is infinitesimally rigid (flexible, resp.).
 - (a) Prove that if the set of infinitesimally rigid *d*-embeddings of a graph with *n* vertices is *not empty*, then it is open and dense in \mathbb{R}^{dn} . For this reason, a graph that possesses an infinitesimally rigid embedding in \mathbb{R}^d is called *generically d-rigid*.
 - (b) (Gluing Lemma for generic rigidity) Show that if G and G' are generically d-rigid graphs that share at least d vertices, then $G \cup G'$ is a generically d-rigid graph.
 - (c) (Cone Lemma for generic rigidity) Show that a graph G is generically d-rigid if and only if the cone over G is generically (d + 1)-rigid.

Hint for part (a): Show that the set of infinitesimally flexible *d*-embeddings of *G* is an algebraic variety, and hence its complement in \mathbb{R}^{dn} is either empty or is open and dense.