Geometric and combinatorial aspects of face numbers

Isabella Novik and Hailun Zheng

Day $2-\mu$-numbers and the fundamental group

A few definitions:

Let Γ and Δ be pure simplicial complexes of the same dimension on disjoint vertex sets. Let F and G be facets of Γ and Δ respectively, and let $\varphi: F \rightarrow G$ be a bijection between the vertices of F and the vertices of G. The connected sum of Γ and Δ, denoted $\Gamma \#_{\varphi} \Delta$ or simply $\Gamma \# \Delta$, is the simplicial complex obtained by identifying the vertices of F and G (and all faces on those vertices) according to the bijection φ and removing the facet corresponding to F (which has been identified with G).
Let Δ be a pure simplicial complex of dimension $d-1$, and let F and F^{\prime} be facets of Δ with disjoint vertex sets. If there is a bijection $\varphi: F \rightarrow F^{\prime}$ such that v and $\varphi(v)$ do not have a common neighbor in Δ for every $v \in F$, the simplicial complex Δ^{φ} obtained from Δ by identifying the vertices of F and F^{\prime} (and all faces on those vertices) and removing the facet corresponding to F (which has been identified with F^{\prime}) is called a handle addition to Δ. The requirement that v and $\varphi(v)$ do not have a common neighbor in Δ ensures that Δ^{φ} is a simplicial complex.

Exercises

1. Today we discussed the following theorem: if Δ is a connected simplicial manifold of dimension $d-1 \geq 3$, then $h_{2}(\Delta)-h_{1}(\Delta) \geq\binom{ d+1}{2} m(\Delta)$, where $m(\Delta)$ is the minimum number of generators of $\pi_{1}(\Delta)$. The goal of this exercise is to show that this bound is sharp.
(a) Let Δ_{1} and Δ_{2} be two pure simplicial complexes of dimension $d-1 \geq 3$. Express h_{1-} and h_{2}-numbers of $\Delta_{1} \# \Delta_{2}$ in terms of the h-numbers of Δ_{1} and Δ_{2}.
(b) Let Δ be a pure simplicial complex of dimension $d-1$, and let Δ^{φ} be obtained from Δ by handle addition. Express the h_{1} - and h_{2}-numbers of Δ^{φ} in terms of $h(\Delta)$.
(c) It is known that for $d \geq 4$, the operation of handle addition increases the value of the m-number by 1 . Use this fact and your results in the previous parts to show that for every non-negative integer b and $d \geq 4$, there exists a connected simplicial manifold Δ of dimension $d-1$ such that $m(\Delta)=b$ and $h_{2}(\Delta)=h_{1}(\Delta)+\binom{d+1}{2} b$.
2. The goal of this exercise is to prove the Morse-type inequalities on the μ-numbers. Let Δ be a simplicial complex and let $\varsigma=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a linear ordering of its vertices.
(a) Note that for $k \leq n, \Delta_{\left\{v_{1}, \ldots, v_{k}\right\}}=\Delta_{\left\{v_{1}, \ldots, v_{k-1}\right\}} \cup \operatorname{st}\left(v_{k}, \Delta_{\left\{v_{1}, \ldots, v_{k}\right\}}\right)$. Apply the MayerVietoris sequence to show that for all $i \geq 0$,

$$
\tilde{\beta}_{i}\left(\Delta_{\left\{v_{1}, \ldots, v_{k}\right\}}\right) \leq \tilde{\beta}_{i}\left(\Delta_{\left\{v_{1}, \ldots, v_{k-1}\right\}}\right)+\tilde{\beta}_{i-1}\left(\operatorname{lk}\left(v_{k}, \Delta_{\left\{v_{1}, \ldots, v_{k}\right\}}\right) .\right.
$$

(b) Use part (a) to conclude that for all $i \geq 0, \tilde{\beta}_{i}(\Delta) \leq \mu_{i}^{\varsigma}(\Delta)$ for any ordering ς of the vertex set of Δ. Then conclude that $\tilde{\beta}_{i}(\Delta) \leq \mu_{i}(\Delta)$ for all $i \geq 0$.
(c) Can you extend this argument to show that $\sum_{j=0}^{i}(-1)^{i-j} \tilde{\beta}_{j}(\Delta) \leq \sum_{j=0}^{i}(-1)^{i-j} \mu_{j}(\Delta)+$ $(-1)^{i+1}$?
3. This exercise along with some careful bookkeeping can be used to show that for any simplicial complex $\Delta, \mu_{1}(\Delta)-\mu_{0}(\Delta)+1 \geq m(\Delta)-\tilde{\beta}_{0}(\Delta)$.
(a) Let Δ and Γ be two simplicial complexes. Assume that Δ is connected, Γ is contractible, and that $\Delta \cap \Gamma$ has exactly two connected components. Prove that $m(\Delta \cup \Gamma) \leq m(\Delta)+1$. Hint: Let Σ_{1} and Σ_{2} be the two connected components of $\Delta \cap \Gamma$, and let γ be the shortest path in Δ that starts in Σ_{1} and ends in Σ_{2}. Consider $\Gamma^{\prime}=\Gamma \cup \gamma$. Apply the Seifert-van Kampen theorem to $\Delta \cup \Gamma=\Delta \cup \Gamma^{\prime}$.
(b) Prove that if Δ is a connected simplicial complex, $\Gamma_{1}, \ldots, \Gamma_{s}$ are several connected and pairwise disjoint subcomplexes of Δ, and v is vertex not in Δ, then

$$
m\left(\Delta \cup\left(v *\left(\Gamma_{1} \cup \cdots \cup \Gamma_{s}\right)\right)\right) \leq m(\Delta)+s-1 .
$$

4. Let Δ be a simplicial complex with vertex set V, and let S_{V} be the set of all linear orderings of V. Recall that for $\varsigma=\left(v_{1}, \ldots, v_{n}\right) \in S_{V}$,

$$
\mu_{j}^{\varsigma}(\Delta):=\sum_{k=1}^{n} \tilde{\beta}_{j-1}\left(\operatorname{lk}\left(v_{k}, \Delta_{\left\{v_{1}, \ldots, v_{k}\right\}}\right)\right), \text { and that } \mu_{j}(\Delta):=\frac{1}{|V|!} \sum_{\varsigma \in S_{V}} \mu_{j}^{\varsigma}(\Delta) .
$$

For a simplicial complex Γ on vertex set U, we also define

$$
\sigma_{j}(\Gamma):=\sum_{W \subseteq U} \frac{1}{\binom{|U|}{|W|}} \tilde{\beta}_{j}\left(\Gamma_{W}\right) \quad \text { for all }-1 \leq j \leq \operatorname{dim} \Gamma .
$$

Prove that

$$
\begin{equation*}
\mu_{j}(\Delta)=\sum_{v \in V} \frac{\sigma_{j-1}(\operatorname{lk}(v, \Delta))}{f_{0}(\operatorname{lk}(v, \Delta))+1} \quad \text { for all } 0 \leq j \leq \operatorname{dim} \Delta . \tag{1}
\end{equation*}
$$

Hint: For a given $v \in V$ and $W \subseteq V \backslash\{v\}$, in how many orderings of V will the set W show up as an initial segment followed up by v ?
Remark: It follows from Hochster's formula, that for a simplicial complex Γ with n vertices, $\sigma_{j-1}(\Gamma)=\sum_{k=j}^{n} \frac{\beta_{k-j, k}(\mathbb{R}[\Gamma])}{\binom{n}{k}}$, where $\beta_{k-j, k}(\mathbb{R}[\Gamma])$ are the algebraic graded Betti numbers. Thus eq. (1) provides us with an algebraic interpretation of the μ-numbers.
5. (a) Let Γ be a $(d-1)$-dimensional homology sphere. Use Alexander duality to show that the σ-numbers defined in the previous problem are symmetric, that is, $\sigma_{j-1}(\Gamma)=\sigma_{d-1-j}(\Gamma)$ for all $0 \leq j \leq d$.
(b) Conclude that if Γ is a d-dimensional homology manifold, then $\mu_{i}(\Delta)=\mu_{d-i}(\Delta)$ for all $0 \leq j \leq d$.

