Geometric and combinatorial aspects of face numbers

Day 3 - Extensions of Dehn-Sommerville relations, UBT, etc.

A few definitions:

The reduced Euler characteristic of a simplicial complex Δ is $\tilde{\chi}(\Delta):=\sum_{i=-1}^{\operatorname{dim} \Delta}(-1)^{i} f_{i}(\Delta)$. By the Euler-Poincaré theorem, the reduced Euler characteristic is also the alternating sum of the reduced Betti numbers: $\tilde{\chi}(\Delta)=\sum_{i=0}^{\operatorname{dim} \Delta}(-1)^{i} \tilde{\beta}_{i}(\Delta)$.

A pure simplicial complex Δ of dimension $d-1$ is called Eulerian if for all $F \in \Delta, \tilde{\chi}(\operatorname{lk}(F, \Delta))=$ $\tilde{\chi}\left(S^{d-|F|-1}\right)=(-1)^{d-|F|-1}$. (Here S^{k} is a k-dimensional sphere). A pure simplicial complex is called semi-Eulerian if all its vertex links are Eulerian. For instance, all simplicial spheres are Eulerian while all simplicial manifolds are semi-Eulerian.

Exercises

1. The goal of this exercise is to prove the following version of Dehn-Sommerville equations (it is due to Victor Klee, 1964): Let Δ be a semi-Eulerian simplicial complex of dimension $d-1$. Then

$$
h_{d-j}(\Delta)-h_{j}(\Delta)=(-1)^{j}\binom{d}{j}\left((-1)^{d-1} \tilde{\chi}(\Delta)-1\right) .
$$

(a) Use double counting to show that for all $0 \leq i \leq j \leq d-1$,

$$
\binom{j}{i} f_{j-1}(\Delta)=\sum_{G \in \Delta,|G|=i} f_{j-i-1}(\operatorname{lk}(G, \Delta))
$$

(b) Use part (a) and the assumption that Δ is semi-Eulerian to show that

$$
\sum_{j=i}^{d}(-1)^{d-j}\binom{j}{i} f_{j-1}(\Delta)=f_{i-1}(\Delta) \quad \text { for all } i=1,2, \ldots, d
$$

What other piece of information do we know that can serve as the equation corresponding to the $i=0$ case?
(c) Mulitply the i-th equation in part (b) by $(x-1)^{d-i}$ and sum over all $i=0,1, \ldots, d$. Compare the coefficients of the resulting polynomials to derive the Dehn-Sommerville relations.
2. Use Problem 1 to prove the following statements.
(a) If Δ is a ($d-1$)-dimensional Eulerian complex, then $h_{i}(\Delta)=h_{d-i}(\Delta)$ for all $0 \leq i \leq d$.
(b) An odd-dimensional semi-Eulerian simplicial complex is Eulerian.
(c) Let Δ be a connected orientable simplicial manifold of dimension $d-1$. Show that $h_{i}^{\prime \prime}(\Delta)=h_{d-i}^{\prime \prime}(\Delta)$ for all $0 \leq i \leq d$.
Hint: Recall that by Poincaré duality $\tilde{\beta}_{i}(\Delta)=\tilde{\beta}_{d-i-1}(\Delta)$ for $1 \leq i \leq d-2$, while $\tilde{\beta}_{0}(\Delta)=0$ and $\tilde{\beta}_{d-1}(\Delta)=1$.
3. The goal of this problem is to prove the Upper Bound Theorem for odd-dimensional simplicial manifolds.
(a) Let Δ be a pure simplicial complex of dimension $d-1$. Define the short simplicial h numbers of Δ by $\widetilde{h}_{i}(\Delta):=\sum_{v \in V(\Delta)} h_{i}(\operatorname{lk}(v, \Delta))$ for all $0 \leq i \leq d-1$. Show that if Δ is a semi-Eulerian complex, then $\widetilde{h}_{i}(\Delta)=\widetilde{h}_{d-i-1}(\Delta)$ for all $0 \leq i \leq d-1$.
(b) Show that if Δ is a pure simplicial complex, then the f-numbers of Δ are non-negative linear combinations of the \widetilde{h}-numbers of Δ.
(c) Compute the \widetilde{h}-vector of the boundary complex of the $2 k$-dimensional cyclic polytope with n vertices, $C(2 k, n)$.
(d) Use Stanley's UBT for spheres and previous parts of this problem to show that if Δ is a (2k-1)-dimensional simplicial manifold with n vertices, then $f_{j}(\Delta) \leq f_{j}(C(2 k, n))$ for all $1 \leq j \leq 2 k-1$.
4. Let Δ be a $2 k$-dimensional simplicial sphere. Define yet another modification of the h numbers: $\hat{h}_{i}(\Delta):=\sum_{j=0}^{i} h_{j}(\Delta)$ for $i=0,1, \ldots, k$.
(a) Show that $f_{2 k}(\Delta)=2 \hat{h}_{k}(\Delta)$; compute the \hat{h}-numbers of the boundary complex of $C(2 k+$ $1, n)$.
(b) Show that $\left(\hat{h}_{0}(\Delta), \hat{h}_{1}(\Delta), \ldots, \hat{h}_{k}(\Delta)\right)$ is an M-sequence.
(c) Show by (reverse) induction that if $f_{2 k}(\Delta) \geq f_{2 k}(C(2 k+1, n))$, then $\hat{h}_{i}(\Delta) \geq \hat{h}_{i}(C(2 k+$ $1, n)$) for all $0 \leq i \leq k$.
(d) Use part (c) to derive the following form of the Strong Upper Bound Theorem: if Δ is a $2 k$-dimensional simplicial sphere with $f_{2 k}(\Delta) \geq f_{2 k}(C(2 k+1, n))$, then $f_{i}(\Delta) \geq$ $f_{i}(C(2 k+1, n))$ for all $0 \leq i \leq 2 k$.

Note: the usual UBT implies that if $f_{2 k}(\Delta) \geq f_{2 k}(C(2 k+1, n))$, then $f_{0}(\Delta) \geq n$.
5. Let $\Gamma \subset \Delta$ be Buchsbaum simplicial complexes, both of dimension $d-1$. Let $\theta_{1}, \ldots, \theta_{d}$ be an l.s.o.p. for $\mathbb{R}[\Delta]$.
(a) Use the Kind-Kleinschmidt criterion to show that the natural images $\bar{\theta}_{1}, \ldots, \bar{\theta}_{d}$ of $\theta_{1}, \ldots, \theta_{d}$ in $\mathbb{R}[\Gamma]$ form an l.s.o.p. for $\mathbb{R}[\Gamma]$.
(b) Show that there is a surjection from $\mathbb{R}[\Delta] /\left(\theta_{1}, \ldots, \theta_{d}\right)$ to $\mathbb{R}[\Gamma] /\left(\bar{\theta}_{1}, \ldots, \bar{\theta}_{d}\right)$.
(c) Conclude that $h_{i}^{\prime}(\Gamma) \leq h_{i}^{\prime}(\Delta)$ for all $0 \leq i \leq d$.

