Geometric and combinatorial aspects of face numbers 6/27/19

Isabella Novik and Hailun Zheng

Day 3 — Extensions of Dehn–Sommerville relations, UBT, etc.

A few definitions:

The reduced Euler characteristic of a simplicial complex Δ is $\tilde{\chi}(\Delta) := \sum_{i=-1}^{\dim \Delta} (-1)^i f_i(\Delta)$. By the Euler–Poincaré theorem, the reduced Euler characteristic is also the alternating sum of the reduced Betti numbers: $\tilde{\chi}(\Delta) = \sum_{i=0}^{\dim \Delta} (-1)^i \tilde{\beta}_i(\Delta)$.

A pure simplicial complex Δ of dimension d-1 is called *Eulerian* if for all $F \in \Delta$, $\tilde{\chi}(\operatorname{lk}(F, \Delta)) = \tilde{\chi}(S^{d-|F|-1}) = (-1)^{d-|F|-1}$. (Here S^k is a k-dimensional sphere). A pure simplicial complex is called *semi-Eulerian* if all its vertex links are Eulerian. For instance, all simplicial spheres are Eulerian while all simplicial manifolds are semi-Eulerian.

Exercises

1. The goal of this exercise is to prove the following version of Dehn-Sommerville equations (it is due to Victor Klee, 1964): Let Δ be a semi-Eulerian simplicial complex of dimension d-1. Then

$$h_{d-j}(\Delta) - h_j(\Delta) = (-1)^j \binom{d}{j} \left((-1)^{d-1} \tilde{\chi}(\Delta) - 1 \right).$$

(a) Use double counting to show that for all $0 \le i \le j \le d-1$,

$$\binom{j}{i}f_{j-1}(\Delta) = \sum_{G \in \Delta, |G|=i} f_{j-i-1}(\operatorname{lk}(G, \Delta)).$$

(b) Use part (a) and the assumption that Δ is semi-Eulerian to show that

$$\sum_{j=i}^{d} (-1)^{d-j} \binom{j}{i} f_{j-1}(\Delta) = f_{i-1}(\Delta) \text{ for all } i = 1, 2, \dots, d.$$

What other piece of information do we know that can serve as the equation corresponding to the i = 0 case?

- (c) Mulitply the *i*-th equation in part (b) by $(x 1)^{d-i}$ and sum over all i = 0, 1, ..., d. Compare the coefficients of the resulting polynomials to derive the Dehn-Sommerville relations.
- 2. Use Problem 1 to prove the following statements.
 - (a) If Δ is a (d-1)-dimensional Eulerian complex, then $h_i(\Delta) = h_{d-i}(\Delta)$ for all $0 \le i \le d$.
 - (b) An odd-dimensional semi-Eulerian simplicial complex is Eulerian.

- (c) Let Δ be a connected orientable simplicial manifold of dimension d-1. Show that $h''_i(\Delta) = h''_{d-i}(\Delta)$ for all $0 \le i \le d$. **Hint:** Recall that by Poincaré duality $\tilde{\beta}_i(\Delta) = \tilde{\beta}_{d-i-1}(\Delta)$ for $1 \le i \le d-2$, while $\tilde{\beta}_0(\Delta) = 0$ and $\tilde{\beta}_{d-1}(\Delta) = 1$.
- 3. The goal of this problem is to prove the Upper Bound Theorem for odd-dimensional simplicial manifolds.
 - (a) Let Δ be a pure simplicial complex of dimension d-1. Define the short simplicial hnumbers of Δ by $\tilde{h}_i(\Delta) := \sum_{v \in V(\Delta)} h_i(\operatorname{lk}(v, \Delta))$ for all $0 \le i \le d-1$. Show that if Δ is a semi-Eulerian complex, then $\tilde{h}_i(\Delta) = \tilde{h}_{d-i-1}(\Delta)$ for all $0 \le i \le d-1$.
 - (b) Show that if Δ is a pure simplicial complex, then the *f*-numbers of Δ are non-negative linear combinations of the \tilde{h} -numbers of Δ .
 - (c) Compute the \tilde{h} -vector of the boundary complex of the 2k-dimensional cyclic polytope with n vertices, C(2k, n).
 - (d) Use Stanley's UBT for spheres and previous parts of this problem to show that if Δ is a (2k-1)-dimensional simplicial manifold with n vertices, then $f_j(\Delta) \leq f_j(C(2k, n))$ for all $1 \leq j \leq 2k-1$.
- 4. Let Δ be a 2k-dimensional simplicial sphere. Define yet another modification of the *h*-numbers: $\hat{h}_i(\Delta) := \sum_{j=0}^i h_j(\Delta)$ for $i = 0, 1, \dots, k$.
 - (a) Show that $f_{2k}(\Delta) = 2\hat{h}_k(\Delta)$; compute the \hat{h} -numbers of the boundary complex of C(2k+1,n).
 - (b) Show that $(\hat{h}_0(\Delta), \hat{h}_1(\Delta), \dots, \hat{h}_k(\Delta))$ is an *M*-sequence.
 - (c) Show by (reverse) induction that if $f_{2k}(\Delta) \ge f_{2k}(C(2k+1,n))$, then $\hat{h}_i(\Delta) \ge \hat{h}_i(C(2k+1,n))$ for all $0 \le i \le k$.
 - (d) Use part (c) to derive the following form of the Strong Upper Bound Theorem: if Δ is a 2k-dimensional simplicial sphere with $f_{2k}(\Delta) \geq f_{2k}(C(2k+1,n))$, then $f_i(\Delta) \geq f_i(C(2k+1,n))$ for all $0 \leq i \leq 2k$.

Note: the usual UBT implies that if $f_{2k}(\Delta) \ge f_{2k}(C(2k+1,n))$, then $f_0(\Delta) \ge n$.

- 5. Let $\Gamma \subset \Delta$ be Buchsbaum simplicial complexes, both of dimension d-1. Let $\theta_1, \ldots, \theta_d$ be an l.s.o.p. for $\mathbb{R}[\Delta]$.
 - (a) Use the Kind-Kleinschmidt criterion to show that the natural images $\bar{\theta}_1, \ldots, \bar{\theta}_d$ of $\theta_1, \ldots, \theta_d$ in $\mathbb{R}[\Gamma]$ form an l.s.o.p. for $\mathbb{R}[\Gamma]$.
 - (b) Show that there is a surjection from $\mathbb{R}[\Delta]/(\theta_1,\ldots,\theta_d)$ to $\mathbb{R}[\Gamma]/(\bar{\theta}_1,\ldots,\bar{\theta}_d)$.
 - (c) Conclude that $h'_i(\Gamma) \leq h'_i(\Delta)$ for all $0 \leq i \leq d$.