Geometric and combinatorial aspects of face numbers

Isabella Novik and Hailun Zheng

Day 4 - More on centrally symmetric polytopes and spheres

1. (a) Let Δ be a $(d-1)$-dimensional simplicial complex and $r \leq d$. Recall that the $(r-1)$ skeleton of $\Delta, \operatorname{Skel}_{r-1}(\Delta)$, is the subcomplex of Δ consisting of all the faces of Δ of dimension $\leq r-1$. Show that

$$
h\left(\operatorname{Skel}_{r-1}(\Delta), \lambda\right)=\operatorname{trunc}_{r}\left[\frac{h(\Delta, \lambda)}{(1-\lambda)^{d-r}}\right],
$$

where the r-truncation of a power series is defined by $\operatorname{trunc}_{r}\left(\sum_{j=0}^{\infty} a_{j} \lambda^{j}\right):=\sum_{j=0}^{r} a_{j} \lambda^{j}$. (This observation is due to Ron Adin.)
Hint: $h(\Delta, \lambda)=\sum_{j=0}^{d} f_{j-1}(\Delta) \lambda^{j}(1-\lambda)^{d-j}$.
(b) Use part (a) to obtain expressions for the h-numbers of a cs ($d-1$)-dimensional sphere with $n=2 m$ vertices that is cs- $\lfloor d / 2\rfloor$-neighborly, assuming such a sphere exists.
Hint: What are the h-numbers of the cross-polytope C_{m}^{*} ?
2. In this exercise we will prove an extension of Adin-Stanley's UBT for cs simplicial spheres to cs odd-dimensional simplicial manifolds. The technique we will use is that of the short simplicial h-vector (see Problem \#3 from yesterday's exercises; the proof here is just a slight modification of the proof from yesterday).
(a) Let $\Gamma \supseteq \Delta$ be $(d-1)$-dimensional Buchsbaum simplicial complexes. Show that $\widetilde{h}_{j}(\Gamma) \geq$ $\widetilde{h}_{j}(\Delta)$ for all $0 \leq j \leq d-1$.
(b) Let Δ be a $(2 k-1)$-dimensional simplicial manifold that is a subcomplex of $\operatorname{Skel}_{2 k-1}\left(C_{m}^{*}\right)$ and let S_{m} be a cs $(2 k-1)$-dimensional simplicial sphere with $2 m$ vertices that is cs- k neighborly, assuming such a sphere exists. Use part (a) to show that $\widetilde{h}_{j}(\Delta) \leq \widetilde{h}_{j}\left(S_{m}\right)$ for all $j \leq k-1$. Conclude that $\widetilde{h}_{j}(\Delta) \leq \widetilde{h}_{j}\left(S_{m}\right)$ for all $j \leq 2 k-1$.
(c) Use part (b) to prove the following result: If Δ is a cs $(2 k-1)$-dimensional simplicial manifold on $n=2 m$ vertices, then $f_{i}(\Delta) \leq f_{i}\left(S_{m}\right)$ for all $1 \leq i \leq 2 k-1$.
3. In this exercise we will prove the following theorem:

Theorem: Let P be a cs simplicial d-polytope with vertex set $V,|V|=n$. Then

$$
f_{1}(P) \leq \frac{n^{2}}{2}\left(1-2^{-d}\right)
$$

(a) Let u and v (and hence also $-v$) be vertices of P. Show that if the translates $P_{u}:=P+u$ and $P_{v}:=P+v$ of P have intersecting interiors, then u and $-v$ are not connected by an edge.
(b) Normalize the Lebesgue measure $d x$ in \mathbb{R}^{d} in such a way that $\operatorname{Vol}(2 P)=1$. For a subset A of \mathbb{R}^{d}, let $[A]: \mathbb{R}^{d} \rightarrow \mathbb{R}$ denote the indicator function of A. Define $h=\sum_{u \in V}\left[\operatorname{int} P_{u}\right]$. Use the Hölder inequality to conclude that

$$
\int_{2 P} h^{2} d x \geq n^{2} 2^{-2 d}
$$

(c) On the other hand, use part (a) to show that

$$
\int_{2 P} h^{2}(x) d x=\sum_{u, v \in V} \operatorname{Vol}\left(P_{u} \cap P_{v}\right) \leq n 2^{-d}+2\left(\binom{n}{2}-f_{1}(P)\right) 2^{-d}
$$

(d) Use the inequalities of parts (b) and (c) to complete the proof of the theorem.
4. (a) Use double counting to show that if Δ is any simplicial complex with n vertices, then for all $j \geq 2$,

$$
\frac{f_{j-1}(\Delta)}{\binom{n}{j}} \leq \frac{f_{1}(\Delta)}{\binom{n}{2}}
$$

(b) Use part (a) and the previous problem to prove the following: if P is a cs simplicial d-polytope with n vertices and $2 \leq j \leq\lfloor d / 2\rfloor$, then

$$
f_{j-1}(\Delta) \leq \frac{n}{n-1}\binom{n}{j}\left(1-2^{-d}\right) .
$$

