THE GEOMETRY OF MATROIDS

LECTURES BY FEDERICO ARDILA

Notes taken by Connor Simpson

Notes on the notes. These notes were taken during Federico Ardila’s mini-course
on matroids at the Summer School on Geometric and Algebraic Combinatorics| at
Sorbonne Université in June 2019. Any errors are the fault of the note-taker, who
can be contacted at |csimpson6@wisc.edu. Many thanks to Arnau Padrol, Vincent
Pilaud, Alfredo Hubard, and Julienne Belair for organizing the school.

1. MATROID BASICS (WITH SPECIAL ATTENTION TO GEOMETRY)

We'll start with some examples of matroids in order to show some of the many
contexts in which they appear. A matroid is a combinatorial object that can be
defined by a collection of “independent sets” (to be described in Definition .
All of the examples below have the same collection of independent sets, meaning
that they all represent the same matroid. The independent sets are

Z={0,a,b,c,d,e,ab,ac,ad,ae,be, bd, be, cd, ce, abc, abd, abe, acd, ace}.

We will use this matroid as a running example throughout the course.

Linear algebra. Given a finite set E of vectors in R™, take the col-
lection of independent sets to be the linearly independent subsets
of E. One may check that 7 is the collection of linearly indepen-
dent subsets of the set of vectors in R? drawn at right. Matroids
of this form are linear matroids.

Graph theory. Given a finite graph with edge set F,

take the independent subsets of E to be those subsets o
that do not contain a cycle. One may check that 7 is
the collection of edge sets of acyclic subgraphs of the
graph at right. Matroids of this form are graphic c
matroids.

Matching problems. Consider a bipartite graph G

with vertex set VU E and all edges of the form {v, e} a
with v € V and e € E. A partial matching in G is / b
a set S of edges such that each vertex of G is incident ! 4
to at most one edge in S. We call a subset I C F in- <
dependent if there is a partial matching S of G such &
that all elements of I are incident to exactly one edge 3 °
of S, and as in the previous examples, one can check 5_
that Z is the collection of all such sets. Matroids from

matching problems are called transversal matroids.

1


http://gac-school.imj-prg.fr/
mailto:csimpson6@wisc.edu

2 LECTURES BY FEDERICO ARDILA

Field extensions. Given a transcendental field extension K /L and generators oy, . . ., ay,
for K over L, call a subset of the generators independent if it is algebraically inde-
pendent over L. For example, let L = C and let

CL:ZQ b:I’ c=yy
1

d=— e = a2y’ f=1
zy

be elements of C(z,y, z). Consider the field extension C(a,b,c,d, e, f)/C; one can
check that the collection of algebraically independent subsets of the generators
{a,b,c,d,e, f} is . Matroids of this form are called algebraic matroids.

With these examples in mind, we can define matroids.

Definition 1.1. A matroid is a pair (E,Z) with F a finite set (called the ground
set) and Z a collection of subsets of E (called independent) satisfying
I1: 7
I2: Subsets of independent sets are independent
I3: If I,J € T and #1 > #.J then there exists ¢ € I\ J such that J U {i} is
independent.

If you want to think about this geometrically, you can think about the inde-
pendence complex, which is the simplicial complex whose faces are independent
sets. The fact that we can think of matroid geometrically immediately raises the
question: which simplicial complexes are matroids?

Theorem 1.2. A simplicial complex A on vertex set E is the independence complex
of some matroid if and only if the restriction Als :={I € A : I C S} of A to any
subset S C E of its vertices is pure (a pure simplicial complez is one whose mazximal
faces are all of the same dimension).

An important characteristic of matroids is that they can be defined with many
different kinds of data. Here is another kind that can be used.

Definition 1.3. A basis of a matroid is a maximal independent set.
Proposition 1.4. All bases have the same cardinality.

In the contexts of our examples at the start, Proposition [[.4] has the following
corollaries:

all bases of a vector space have the same size

e all spanning trees have the same size

e all maximal sets of “fillable jobs” have the same size

e the transcendence degree of an extension is well-defined

As promised, bases yield an equivalent way to define a matroid.

Definition 1.5. A matroid is a pair (F, B) with E a finite set and B a collection
of subsets of E called bases satisfying

B1l: B#0

B2: If A, B € Band a € A—B then there is b € B— A such that (A—a)Ub € B.
Axiom B2 is called the exchange axiom for bases. Equivalent to B2 is the follow-
ing strong exchange axiom:

B2*: If A, B € Band a € A—B then thereis b € B— A such that (A—a)Ub € B
and (B—0b)Ua € B.
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Remark 1.6. When Federico did his postdoc, he went for a walk with David Eisen-
bud. Eisenbud asked what he did, and up hearing that Federico worked on matroids,
said “I don’t like matroids”. When asked why, he said that it was because there
were some things in his commutative algebra book that he didn’t know how to
prove without them.

As always, we would like to think of this geometrically
Definition 1.7. The matroid polytope of M is
Py :=conv(eg : B € B) C RE
where eg = ZZ-GB e; and e; is the ith standard basis vector.

Example 1.8. Our running example has bases {abc, abd, abe, acd, ace}, and its
matroid polytope is
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The modern, geometric theory of matroids begins with the following question:
which polytopes are matroid polytopes?

Theorem 1.9 (Gelfand-Goresky-MacPherson-Serganova, Edmonds). P is the ma-
troid polytope of some matroid if and only if the vertices of P are all 0-1 vectors
and all the edges of P are parallel to e; — e; for some i and j.

Proof. We show that a matroid polytope’s edges are all parallel to e; — e; for some
1 and j. Suppose that P = Py;. If A and B are neighbors, then the edge between
them is the set on which a linear functional w is maximized. By the basis exchange
axiom, we can fine elements a € A and b € B such that (A —a)Ub and (B—-0b)Ua
are both bases. We now have a parallelogram
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By linearity, w(A) + w(B) = w((A —a) Ub) + w((B —b) Ua). But A and B are
the only vertices at which w is maximized, so we must have (A —a) Ub = B and
(B —b)Ua = A, therefore, A — B =¢, — €.

The reverse direction is similar. d

Remark 1.10. Not much is known about the face lattices of matroid polytopes.

2. CONSTRUCTIONS

The geometric perspective afforded by matroid polytopes allow us to quickly
construct new matroids from old ones. Some important constructions follow.
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Direct sum: Let M7, Ms be matroids on disjoint ground sets E;, F5. If you
take the product of two polytopes, any edge direction in the product is an
edge direction of one of the original two polytopes (because any edge of the
product is either an edge times a vertex or a vertex times an edge). From
this, it follows that P = Py, X Py, is a matroid polytope. The matroid
associated to P is the direct sum of M; and M,, denoted My & M.

Duality: Let M be a matroid on E and consider the polytope —Py; +
(1,...,1) € RE. One can check that this has the right edge directions
to be a matroid polytope; the associated matroid is M™*, the dual of M.
From the vertices of —Pp; + (1,...,1), one can see that the bases of M*
are the complements of the bases of M. (Warning: matroid duality does
NOT correspond to polytope duality.)

Deletion & contraction: Let M be a matroid on E. Consider the face
F = Py n{z. = 0}. The edge directions of the face are all edge directions
of Py, so F'is a matroid polytope corresponding to the deletion of e from
M, denoted M \ e. Likewise, the face F’ = Py; N {z. = 1} corresponds to
a matroid called the contraction of M by e, denoted M/e.

Optimization: Let M be a matroid on ¥ and w : F — R a weight function.
Let (Pps)w be the face of Pys defined by w, and let M, be the matroid
defined by (Pps)w. The bases of M,, are the bases of M of minimal weight,
where the weight of a basis B is defined by w(B) =}, g w(b).

Evidently, this construction generalizes the previous one. In general,
optimization cannot in general be expressed by deletion and contraction
alone; however, it can be expressed using deletion, contraction, and direct
sums.

This construction also has a number of applications. For example, find-
ing min-cost spanning trees is this problem for (weighted) graphs.

2.1. What does duality mean? To get a feel for duality, let’s look at duality in

the special case of linear matroids.

Definition 2.1. Pick a basis for R™. If V' C R™ is an r-dimensional subspace, the
matroid of V is defined by

B C [n] abasis «—= VNRMNE =0 «— V4+RMN-B =R~

Now, let A be an r X n matrix. There are two different matroids that we can
associated to A:
e The matroid of the n columns in R"”
e The matroid of the r-dimensional subspace V' = rowspan(A) C R™.

Proposition 2.2. The matroid of the columns of A is isomorphic to the matroid
of the row-span of A.

We can realize the dual of the matroid defined by a subspace easily:
Proposition 2.3. If V C R™ has matroid M, then V- C R™ has matroid M*.
Corollary 2.4. The dual of a linear matroid is linear.

In the even more special case of planar graphic matroids, one can check that
duality corresponds to taking the planar dual of the graph. The dual graph depends
on the embedding of the graph; however all dual graphs have the same matroid.
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The dual of a transversal matroid is called a cotransversal matroid; while a
transversal matroid corresponds to a matching problem, a cotransversal matroids
corresponds to a routing problem.

Open problem 2.5. Is the dual of an algebraic matroid algebraic?

Remark 2.6. Federico holds the opinion that this is probably not true because a
duality of this sort would probably have some well-known manifestation in the
algebra by now, but does not seem to (Federico also says that you should not take
his opinion too seriously).

The essential problem here is that we don’t have many tools for showing that a
matroid is not algebraic. However, it seems possible that one can just compute some
very large example with Sage that wasn’t possible in the past and do something
specific to that.

To construct a non-linear matroid, one typically builds one whose flats violate
some classical geometry theorem (an example is the non-Pappus matroid). To find
a non-algebraic matroid, one probably would need to do something similar.

Open problem 2.7. Why is the matroid polytope of K4 self-dual? Usually the
polar dual of a matroid polytope is not a matroid polytope, but it is in this case...
Is there a theory here?

2.2. More on optimization and matroids. Let M be a matroid on E and
w : E — R a weight function. Recall that the matroid M, is the matroid whose
bases are those of M that have minimal weight, where the weight of a basis B is
w(B) =) ,cpw(b).. We now describe an algorithm for finding a basis of M,,.

Algorithm.
Input: the independent sets of a matroid M and a weight function w
Output: a basis of M,
(1) Let I =0.
(2) Replace I by I Ue, where e € E \ I is an element of minimal weight such
that I U e is independent.
(3) Repeat until you have a basis.

Proposition 2.8. The algorithm above outputs a basis of M that has minimal
weight with respect to w.

Proof. Let I = {iy,ia,...,ir} be r elements selected by the greedy algorithm with
w(iy) < w(iz) < - - <w(i,) and let J = {j1,j2,...,jr} be some other independent
set with w(j1) < --- < w(j,). Suppose towards a contradiction that w(J) < w(I).
Then there exists a k such that w(j,) < w(ix). Now, the sets I’ = {i1,...,ix—1}
and J' = {j1,...,Jx} are independent, so there exists j, € J'\ I’ such that I’ Uj, is
independent. But then w(jy) < w(ji) < w(ix), contrary to the fact that the greedy
algorithm adds an element of minimal weight at each step. O

Corollary 2.9.

(i) The greedy basis is a w-min basis of M.
(ii) {w(e) : e € B} is the same for all min-weight bases B.
(iii) If you allow all possible choices of elements, this algorithm will produce all
min-weight bases.
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Theorem 2.10. Let A be a simplicial complex. A =IN(M) for some matroid M
if and only if for any w : E — R, the greedy algorithm works.

Remark 2.11. Suggestion from Federico: Read old optimization papers. They often
contain exactly what you need (though perhaps in different language).

3. THE CHARACTERISTIC POLYNOMIAL
Definition 3.1. The rank function of a matroid M on F is r : 2 — N defined by
r: A max{#I : I C A independent}.

Definition 3.2. A flat of a matroid is F C FE such that for all a € FE \ F,
r(FUa) > r(F). The lattice of flats, denoted L/, is the poset of flats of M
ordered by containment.

Definition 3.3. The Mobius function of a finite poset P is u : P — R defined
recursively by p(0) := 1, and pu(F) := = o p u(G).
Example 3.4. The flats of our running example are: {f}, {a, f}, {b, f}, {c, f},

{d,e, f}, {a,b, f}, {a,c, [}, {b,c,d,e, f}, E. Pictorially, the lattice of flats (with
values of the Md&bius function written in orange beside it) looks like:

Definition 3.5. The characteristic polynomial of M is

xur(q) =Y p(F)g" ) = N (1) Algr )
F flat ACE

and the reduced characteristic polynomial is x/(q) := xl%(qq)'

The characteristic polynomial looks arbitrary on the face of it. However, some
motivation is provided by the following facts:

e If M is a matroid of a graph with ¢ components, then ¢y (q) is the
number of proper g-colorings of the graph; that is, the number of ways of
coloring the vertices using ¢ colors such that the endpoints of every edge
have distinct colors.

e Let M be the linear matroid of A = vq,...,v,} C k™ for k some field. A
determines a hyperplane arrangement A = {H;, ..., H,} with H; = vi-.

— If k =R, then the number of regions of R™ \ A is equal to |x(—1)|.

— If k = Fy, then the number of points of Fy \ A is equal to x(g) (Bjorner
and Ekendahl).

— If k = C, then the topological Betti numbers of C™ \ A is equal to the
absolute values of the coefficients of x(¢) (Orlik and Solomon).
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Example 3.6. Using the values of the Mobius function in Example [3:4] one com-
putes that our running example has characteristic polynomial x(q) = ¢>—4¢>+5q¢—2
and reduced characteristic polynomial ¥(q) = ¢* — 3¢ + 2.

A loop of a matroid is an element that is in no bases, while a coloop is an element
that is in every basis.

Proposition 3.7. We have the following relations:

X (9) = Xane(q) — Xar/e(a), e neither a loop nor a coloop
XJV[(Q) = XM\e(q)v e a loop
xm(q) = Xarye(q)s e a coloop

Proposition 3.8. If xa(q) =Yg ai(—1)""%, then ay,ar_1,...,a9 > 0.

The following result was conjectured by Rota in the 1970’s. Huh proved it
for graphs in 2012 |[Huhl4|, then Huh and Katz did another case [HK12], then
Adiprasito-Huh-Katz proved the general case [AHK18].

Theorem 3.9 (Rota’s conjecture). The sequence (ag,...,a,) is unimodal and log-
concave; that is, ag < ay < - <agp > -+ >a, and a;—1a;41 < a?.

4. THE ORDER COMPLEX AND BERGMAN FANS

The order complex of a poset P is the simplicial complex A(P) whose faces
are chains in P. For a finite lattice L, write L := L\ {0,1}, where 0 and 1 are the
minimal and maximal elements of L, respectively.

Theorem 4.1 (Bjérner). The order complex A(Lyr) with M a matroid of rank r
is a wedge of |u(M)] := |xa(0)| spheres of dimension (r —2).

In essence, this theorem was proved by constructing a shelling (of a kind invented

by Bijorner and Wachs) of A(£) and tracking when spheres get closed.

Definition 4.2. A EL-shelling of a ranked poset P whose Hasse diagram has
edge set E(P) is a function A : E(P) — Z such that

i) for any interval [z,y], there is a unique maximal chain my, . from = to

i) f y int 1 [z,y], there i i imal chai [z,9] T to y
with increasing labels

(ii) for any other maximal chain m’ from x to y, we have A(m’) > A(M, ) in
lexicographic order.

Proposition 4.3. ThAe Alexicogmphic order on chains given by an EL-shelling gives
a shelling of A(P — {0,1}), and this order complex is a wedge of

#{weakly decreasing mazimal chains from 0 to 1}
spheres of dimension height(P) — 2.

Example 4.4. Let M be our running example with f removed. Order the ground
set of M in this example, we will use a < b < ¢ < d < e, but any order will work.
Label an edge from F to G by A(F,G) := min(G — F). The red labels on the poset
in the left-hand side of the figure below illustrate this labelling.
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Note that there is a unique maximal increasing path in the labelling, drawn in green,
and two weakly decreasing maximal paths, drawn in blue. Using Proposition [-3]
and Theorem we can read off properties of the order complex (drawn on the
right-hand side above) from L), and its labelling: £, has height 3, so the order
complex should be a wedge of 1-spheres, and the two decreasing paths mean that
it should be a wedge of exactly two 1-spheres.

The EL-shelling of £j; induces an ordering of the facets of A(Ly — {0,1}).
For facets ' and G, there are unique extensions F’, G’ of F and G to maximal
chains in Ly, and we say that F' < G if F/ <jex G', where <jox is lexicographic
order. The facets of the order complex in the figure above have been numbered in
increasing order according to the labelling of £, that is drawn. The two facets
with blue asterisks are facets that close a 1-sphere. They correspond to the two
weakly decreasing blue paths in L);.

Remark 4.5. In general, the existence of an increasing path in an EL-labelling of
the lattice of flats follows from the greedy algorithm with weight vector w satisfying
w(a) < w(b) < w(c) < w(d) < w(e), as the greedy algorithm builds up a basis by
taking elements of minimal weight.

Theorem [£.1] and Proposition [£.3]show that the constant term of the characteris-
tic polynomial is equal to the number of weakly decreasing maximal chains in £y;.
The following result generalizes this fact.

Proposition 4.6. Let M be a matroid and suppose that we have an EL-shelling of
L.
(1) The number of decreasing saturated chains from 0 of length k is equal to
the absolute value of the kth coefficient of xn(q).
(2) The number of such chains that avoid the minimal label is equal to the

absolute value of the kth coefficient of X(q) := ’f(fq(g,

The order complex of the lattice of flats also appears in another context: tropical
geometry. Given an algebraic variety V', one can consider its tropicalization, a
polyhedral complex that captures some of the data of V.

Theorem 4.7 (Ardila-Klivans 2006, [AKO6]). If V' is a linear subspace of R",
then its tropicalization is a cone over A(Ly(vy), where M (V) is the matroid of the
subspace matroid of V. The tropicalized variety is the Bergman fan of M (V).

Theorem 4.8 (Fink 2010 [Finl3]). Bergman fans of matroids are the tropical
varieties of degree 1.
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This theorem shows that, while some tropical varieties do not come from al-
gebraic ones, they do all come from matroids. Associated to the Bergman fan
of a matroid is a toric variety, which in turn has a Chow ring. By a theorem
of Danilov 1987, the Chow ring is given by the presentation A*(M) = Clzp :
F proper flat]/I; + I where

11:<meGzF§ZG,G§ZF>

I, = <pr— ng 11,5 € E).
ieF jea
The great insight of Adiprasito, Huh, and Katz was that the Chow ring behaves
like the Chow ring of a smooth projective variety, meaning that it satisfies the
Kéhler package (keywords that we leave undefined: Poincaré duality, Hard Lefschetz
condition, and Hodge-Riemann relations). Without getting into too much detail,
A*(M) is a graded ring such that
o A(M)=0fori>r(M)—1.
e there is an isomorphism deg : A")~1 (M) — C
e For any ample a,b € Al (M), the sequence deg(a""1), deg(a"~2b),...,deg(b" 1)
is unimodal and log-concave.
o Leta=) prrpand 3= ZigF rr. Then deg(a?B"~17%) is the number of
saturated decreasing chains of length £ in the lattice of flats, or equivalently,
the kth coefficient of the reduced characteristic polynomial.

The majority of the work done by Adiprasito, Huh, and Katz goes towards estab-
lishing the K&hler package for A(M) using an inductive strategy of “flips”. Once
they have established the Kéhler package, they use the properties of A(M) listed
above to prove Theorem [3.9]

In [BES19], Backman, Eur, and Simpson use a new presentation of the Chow
ring to give a different proof of Poincaré duality, and of both the Hard Leftschetz
property and the Hodge-Riemann relation in degree 1, yielding a different proof of
Theorem Even more recently, the following stronger result was obtained by
Ardila, Denham, and Huh.

Theorem 4.9 (Ardila-Denham-Huh 2019+). The coefficients of xa(q + 1) are
log-concave.

To obtain this result, Ardila, Denham, and Huh study the “cornormal fan”,
which is different from the Bergman fan.
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