Christopher Borger (joint with G. Balletti)

Families of lattice polytopes of mixed degree one

Summer School on Geometric and Algebraic Combinatorics

June 26, 2019

Institut für Algebra und Geometrie
Otto-von-Guericke-Universität Magdeburg
DFG-Graduiertenkolleg
MATHEMATISCHE KOMPLEXITÄTSREDUKTION

Lattice Polytopes

Definition (Lattice Polytope)

A lattice polytope is the convex hull of finitely many lattice points $v_{1}, \ldots, v_{k} \in \mathbb{Z}^{d}$.

Lattice Polytopes

Definition (Lattice Polytope)

A lattice polytope is the convex hull of finitely many lattice points $v_{1}, \ldots, v_{k} \in \mathbb{Z}^{d}$.

equivalence: up to lattice preserving affine transformations.

Lattice Polytopes

Definition (Lattice Polytope)

A lattice polytope is the convex hull of finitely many lattice points $v_{1}, \ldots, v_{k} \in \mathbb{Z}^{d}$.

equivalence: up to lattice preserving affine transformations.
In this talk: $P \subset \mathbb{R}^{d}$ always full-dimensional.

A little bit of Ehrhart theory

Consider the integer point counting function:

$$
k \mapsto\left|k P \cap \mathbb{Z}^{d}\right|
$$

Theorem (Stanley '80)

$$
\sum_{k \geqslant 0}\left|k P \cap \mathbb{Z}^{d}\right| t^{k}=\frac{h_{P}^{*}(t)}{(1-t)^{d+1}}
$$

where h_{P}^{*} is a polynomial of degree $\leqslant d$ with coefficients in $\mathbb{Z}_{\geqslant 0}$.

A little bit of Ehrhart theory

Consider the integer point counting function:

$$
k \mapsto\left|k P \cap \mathbb{Z}^{d}\right|
$$

Theorem (Stanley '80)

$$
\sum_{k \geqslant 0}\left|k P \cap \mathbb{Z}^{d}\right| t^{k}=\frac{h_{P}^{*}(t)}{(1-t)^{d+1}}
$$

where h_{P}^{*} is a polynomial of degree $\leqslant d$ with coefficients in $\mathbb{Z}_{\geqslant 0}$.

Definition

The degree of h_{P}^{*} is called the degree of P.

The degree of a lattice polytope

The degree of a lattice polytope

- measure for the complexity of a lattice polytope

The degree of a lattice polytope

- measure for the complexity of a lattice polytope
- $\operatorname{deg}(P)=0 \Leftrightarrow P \cong \Delta_{d}=\operatorname{conv}\left(0, e_{1}, \ldots, e_{d}\right)$
- invariant under taking lattice pyramids
- monotone with respect to inclusion

The degree of a lattice polytope

- measure for the complexity of a lattice polytope
- $\operatorname{deg}(P)=0 \Leftrightarrow P \cong \Delta_{d}=\operatorname{conv}\left(0, e_{1}, \ldots, e_{d}\right)$
- invariant under taking lattice pyramids
- monotone with respect to inclusion
- $d+1-\operatorname{deg}(P)=\min \left\{k \in \mathbb{Z}_{>0}: \operatorname{int}(k P) \cap \mathbb{Z}^{d} \neq \varnothing\right\}$ $=: \operatorname{codeg}(P)$, the codegree of P :

The degree of a lattice polytope

- measure for the complexity of a lattice polytope
- $\operatorname{deg}(P)=0 \Leftrightarrow P \cong \Delta_{d}=\operatorname{conv}\left(0, e_{1}, \ldots, e_{d}\right)$
- invariant under taking lattice pyramids
- monotone with respect to inclusion
- $d+1-\operatorname{deg}(P)=\min \left\{k \in \mathbb{Z}_{>0}: \operatorname{int}(k P) \cap \mathbb{Z}^{d} \neq \varnothing\right\}$

$$
=: \operatorname{codeg}(P), \text { the codegree of } P:
$$

Generalizing to tuples: Mixed Degree

Note: $k P=P+\cdots+P=\left\{p_{1}+\cdots+p_{k}: p_{i} \in P\right\}$

Definition

Mixed codegree: $\operatorname{mcd}\left(P_{1}, \ldots, P_{d}\right)=$ $\min \left\{k \in \mathbb{Z}_{>0}: \exists i_{1}<\cdots<i_{k}\right.$ with $\left.\operatorname{int}\left(P_{i_{1}}+\cdots+P_{i_{k}}\right) \cap \mathbb{Z}^{d} \neq \varnothing\right\}$ (if $P_{1}+\cdots+P_{d} \cap \mathbb{Z}^{d}=\varnothing$, set $\mathrm{mcd}=d+1$)

Mixed degree: $\operatorname{md}\left(P_{1}, \ldots, P_{d}\right):=d+1-\operatorname{mcd}\left(P_{1}, \ldots, P_{d}\right)$.

Generalizing to tuples: Mixed Degree

Note: $k P=P+\cdots+P=\left\{p_{1}+\cdots+p_{k}: p_{i} \in P\right\}$

Definition

Mixed codegree: $\operatorname{mcd}\left(P_{1}, \ldots, P_{d}\right)=$ $\min \left\{k \in \mathbb{Z}_{>0}: \exists i_{1}<\cdots<i_{k}\right.$ with $\left.\operatorname{int}\left(P_{i_{1}}+\cdots+P_{i_{k}}\right) \cap \mathbb{Z}^{d} \neq \varnothing\right\}$ (if $P_{1}+\cdots+P_{d} \cap \mathbb{Z}^{d}=\varnothing$, set $\mathrm{mcd}=d+1$)

Mixed degree: $\operatorname{md}\left(P_{1}, \ldots, P_{d}\right):=d+1-\operatorname{mcd}\left(P_{1}, \ldots, P_{d}\right)$.

- $\operatorname{md}(P, \ldots, P)=\operatorname{deg}(P)$
- monotone with respect to inclusion

Generalizing to tuples: Mixed Degree

Note: $k P=P+\cdots+P=\left\{p_{1}+\cdots+p_{k}: p_{i} \in P\right\}$

Definition

Mixed codegree: $\operatorname{mcd}\left(P_{1}, \ldots, P_{d}\right)=$
$\min \left\{k \in \mathbb{Z}_{>0}: \exists i_{1}<\cdots<i_{k}\right.$ with $\left.\operatorname{int}\left(P_{i_{1}}+\cdots+P_{i_{k}}\right) \cap \mathbb{Z}^{d} \neq \varnothing\right\}$ (if $P_{1}+\cdots+P_{d} \cap \mathbb{Z}^{d}=\varnothing$, set $\mathrm{mcd}=d+1$)

Mixed degree: $\operatorname{md}\left(P_{1}, \ldots, P_{d}\right):=d+1-\operatorname{mcd}\left(P_{1}, \ldots, P_{d}\right)$.

- $\operatorname{md}(P, \ldots, P)=\operatorname{deg}(P)$
- monotone with respect to inclusion
- should measure the complexity of a tuple

The mixed degree: Examples

$$
\begin{array}{ccc}
\Delta_{\Delta_{2}} \cdot & \Delta \cdot \\
\operatorname{mcd}\left(\Delta_{2}, \Delta_{2}\right)=3 & \Delta_{2} & \Delta_{2}+\Delta_{2} \\
\operatorname{md}\left(\Delta_{2}, \Delta_{2}\right)=0
\end{array}
$$

The mixed degree: Examples

The mixed degree: Examples

Mixed Degree zero

Theorem (Cattani et al. '11, Nill '17)

$P_{1}, \ldots, P_{d} \subset \mathbb{R}^{d}$ full-dimensional: $\operatorname{md}\left(P_{1}, \ldots, P_{d}\right)=0 \Leftrightarrow\left(P_{1}, \ldots, P_{d}\right) \cong\left(\Delta_{d}, \ldots, \Delta_{d}\right)$

Mixed Degree zero

Theorem (Cattani et al. '11, Nill '17)

$P_{1}, \ldots, P_{d} \subset \mathbb{R}^{d}$ full-dimensional: $\operatorname{md}\left(P_{1}, \ldots, P_{d}\right)=0 \Leftrightarrow\left(P_{1}, \ldots, P_{d}\right) \cong\left(\Delta_{d}, \ldots, \Delta_{d}\right)$
equivalence: common lattice preserving affine transformation + individual translations

Mixed Degree zero

Theorem (Cattani et al. '11, Nill '17)
$P_{1}, \ldots, P_{d} \subset \mathbb{R}^{d}$ full-dimensional: $\operatorname{md}\left(P_{1}, \ldots, P_{d}\right)=0 \Leftrightarrow\left(P_{1}, \ldots, P_{d}\right) \cong\left(\Delta_{d}, \ldots, \Delta_{d}\right)$
equivalence: common lattice preserving affine transformation + individual translations

Note: $\operatorname{md}\left(P_{1}, \ldots, P_{d}\right)=0 \Leftrightarrow P_{1}+\cdots+P_{d}$ is hollow.

Next step: Mixed Degree one

Note: $\operatorname{md}\left(P_{1}, \ldots, P_{d}\right) \leqslant 1$ iff $P_{i_{1}}+\cdots+P_{i_{d-1}}$ is hollow for any choice $1 \leqslant i_{1}<\cdots<i_{d-1} \leqslant d$.

Next step: Mixed Degree one

Note: $\operatorname{md}\left(P_{1}, \ldots, P_{d}\right) \leqslant 1$ iff $P_{i_{1}}+\cdots+P_{i_{d-1}}$ is hollow for any choice $1 \leqslant i_{1}<\cdots<i_{d-1} \leqslant d$.

Theorem (Soprunov '07, Nill '17)
For $P_{1}, \ldots, P_{d} \subset \mathbb{R}^{d}$ full-dimensional:

$$
\operatorname{MV}\left(P_{1}, \ldots, P_{d}\right)-1 \leqslant \operatorname{int}\left(P_{1}+\cdots+P_{d}\right) \cap \mathbb{Z}^{d}
$$

with equality iff $\operatorname{md}\left(P_{1}, \ldots, P_{d}\right) \leqslant 1$.
Soprunov's Question: What are the tuples of lattice polytopes for which the upper bound is attained?

Results for Mixed Degree one

Theorem (Batyrev-Nill '04 (unmixed))

$P \subset \mathbb{R}^{d}$ with $\operatorname{deg}(P) \leqslant 1$. Then either

- P is the $(d-2)$-fold pyramid over $2 \Delta_{2}$, or
- there is a lattice projection of P onto Δ_{d-1}.

Results for Mixed Degree one

Theorem (Batyrev-Nill '04 (unmixed))

$P \subset \mathbb{R}^{d}$ with $\operatorname{deg}(P) \leqslant 1$. Then either

- P is the $(d-2)$-fold pyramid over $2 \Delta_{2}$, or
- there is a lattice projection of P onto Δ_{d-1}.

Theorem (Balletti-B '19)

$P_{1}, \ldots, P_{d} \subset \mathbb{R}^{d}$ with $\operatorname{md}\left(P_{1}, \ldots, P_{d}\right) \leqslant 1$ and $d \geqslant 4$. Either

- P_{1}, \ldots, P_{d} is among finitely many exceptional families, or
- P_{1}, \ldots, P_{d} have common projection onto Δ_{d-1}.

Results for Mixed Degree one

Theorem (Batyrev-Nill '04 (unmixed))

$P \subset \mathbb{R}^{d}$ with $\operatorname{deg}(P) \leqslant 1$. Then either

- P is the $(d-2)$-fold pyramid over $2 \Delta_{2}$, or
- there is a lattice projection of P onto Δ_{d-1}.

Theorem (Balletti-B '19)

$P_{1}, \ldots, P_{d} \subset \mathbb{R}^{d}$ with $\operatorname{md}\left(P_{1}, \ldots, P_{d}\right) \leqslant 1$ and $d \geqslant 4$. Either

- P_{1}, \ldots, P_{d} is among finitely many exceptional families, or
- P_{1}, \ldots, P_{d} have common projection onto Δ_{d-1}.

For $d=3$ there exist infinitely many exceptional families.

Example with projection

Example without projection

P_{1}

$P_{1}+P_{2}$

$P_{1}+P_{3}$
$P_{2}+P_{3}$

$$
P_{1}+P_{2}+P_{3}
$$

A bit of proof (and what breaks for $d<4$)

$\operatorname{md}\left(P_{1}, \ldots, P_{d}\right) \leqslant 1$ iff $P_{i_{1}}+\cdots+P_{i_{d-1}}$ is hollow for any choice $1 \leqslant i_{1}<\cdots<i_{d-1} \leqslant d$.

Theorem (Nill-Ziegler '11)

Let $P \subset \mathbb{R}^{d}$ be a hollow lattice polytope. Then either

- P admits a lattice projection onto a hollow (d-1)-polytope, or
- P is one of finitely many exceptions.

A bit of proof (and what breaks for $d<4$)

$\operatorname{md}\left(P_{1}, \ldots, P_{d}\right) \leqslant 1$ iff $P_{i_{1}}+\cdots+P_{i_{d-1}}$ is hollow for any choice $1 \leqslant i_{1}<\cdots<i_{d-1} \leqslant d$.

Theorem (Nill-Ziegler '11)

Let $P=P_{1}+\cdots+P_{d-1}$ be a hollow d-dimensional lattice polytope. Then either

- P admits a lattice projection onto $(d-1) \Delta_{d-1}$, or
- P is one of finitely many exceptions.
\Rightarrow leads to finiteness of tuples whenever any sum $P_{i_{1}}+\cdots+P_{i_{d-1}}$ is exceptional! (there are some things to be shown on the way)

A bit of proof (and what breaks for $d<4$)

What is left: Any $(d-1)$-subtuple of P_{1}, \ldots, P_{d} has a common projection onto Δ_{d-1}.
(1) (at least) two of the projections are the same \Rightarrow there exists a common projection for the whole P_{1}, \ldots, P_{d}
(2) all projections are different \Rightarrow any P_{i} has $d-1$ different projections onto Δ_{d-1}.

A bit of proof (and what breaks for $d<4$)

What is left: Any $(d-1)$-subtuple of P_{1}, \ldots, P_{d} has a common projection onto Δ_{d-1}.
(1) (at least) two of the projections are the same \Rightarrow there exists a common projection for the whole P_{1}, \ldots, P_{d}
(2) all projections are different \Rightarrow any P_{i} has $d-1$ different projections onto Δ_{d-1}.

Lemma

Let $P \subset \mathbb{R}^{d}$ be a lattice polytope that has 3 different lattice projections onto Δ_{d-1}. Then $P \cong \Delta_{d}$.

A bit of proof (and what breaks for $d<4$)

What is left: Any $(d-1)$-subtuple of P_{1}, \ldots, P_{d} has a common projection onto Δ_{d-1}.
(1) (at least) two of the projections are the same \Rightarrow there exists a common projection for the whole P_{1}, \ldots, P_{d}
(2) all projections are different \Rightarrow any P_{i} has $d-1$ different projections onto Δ_{d-1}.

Lemma

Let $P \subset \mathbb{R}^{d}$ be a lattice polytope that has 3 different lattice projections onto Δ_{d-1}. Then $P \cong \Delta_{d}$.

Lemma

For $d \geqslant 5$ the only tuple P_{1}, \ldots, P_{d} for which all $(d-1)$-subtuples have different common projections onto Δ_{d-1} is $\left(\Delta_{d}, \ldots, \Delta_{d}\right)$.

The case $d=3$

Theorem (Balletti-B '19)

Let $P_{1}, P_{2}, P_{3} \subset \mathbb{R}^{3}$ be an exceptional triple with $\operatorname{md}\left(P_{1}, P_{2}, P_{3}\right)=1$. Then it is equivalent to a triple in a list of 279 triples or it is contained in one of finitely many 1-parameter families of triples.

Some further questions

- What are the exceptional families of mixed degree one? Can they be described easily (for d large enough)?

Some further questions

- What are the exceptional families of mixed degree one? Can they be described easily (for d large enough)?
- Conjecture: all contained in $\left(2 \Delta_{d}, \Delta_{d}, \ldots, \Delta_{d}\right)$ or $\left(\mathcal{P}^{(d-2)}\left(2 \Delta_{2}\right), \ldots, \mathcal{P}^{(d-2)}\left(2 \Delta_{2}\right)\right)$
- geometrical arguments from Batyrev-Nill can (probably) be adapted
- hard part: tuples containing empty simplices
- in course of this: study interplay between hollowness and Minkowski sums

Some further questions

- What are the exceptional families of mixed degree one? Can they be described easily (for d large enough)?
- Conjecture: all contained in $\left(2 \Delta_{d}, \Delta_{d}, \ldots, \Delta_{d}\right)$ or $\left(\mathcal{P}^{(d-2)}\left(2 \Delta_{2}\right), \ldots, \mathcal{P}^{(d-2)}\left(2 \Delta_{2}\right)\right)$
- geometrical arguments from Batyrev-Nill can (probably) be adapted
- hard part: tuples containing empty simplices
- in course of this: study interplay between hollowness and Minkowski sums
- Structural result for high dimension and low mixed degree?
- Haase-Nill-Payne '08: $\operatorname{deg}(P)=k$ and $\operatorname{dim}(P) \geqslant f(k) \Rightarrow P$ is a Cayley polytope

Some further questions

- What are the exceptional families of mixed degree one? Can they be described easily (for d large enough)?
- Conjecture: all contained in $\left(2 \Delta_{d}, \Delta_{d}, \ldots, \Delta_{d}\right)$ or $\left(\mathcal{P}^{(d-2)}\left(2 \Delta_{2}\right), \ldots, \mathcal{P}^{(d-2)}\left(2 \Delta_{2}\right)\right)$
- geometrical arguments from Batyrev-Nill can (probably) be adapted
- hard part: tuples containing empty simplices
- in course of this: study interplay between hollowness and Minkowski sums
- Structural result for high dimension and low mixed degree?
- Haase-Nill-Payne '08: $\operatorname{deg}(P)=k$ and $\operatorname{dim}(P) \geqslant f(k) \Rightarrow P$ is a Cayley polytope
- Is there an algebraic definition (as the degree of a polynomial)?

Some further questions

- What are the exceptional families of mixed degree one? Can they be described easily (for d large enough)?
- Conjecture: all contained in $\left(2 \Delta_{d}, \Delta_{d}, \ldots, \Delta_{d}\right)$ or $\left(\mathcal{P}^{(d-2)}\left(2 \Delta_{2}\right), \ldots, \mathcal{P}^{(d-2)}\left(2 \Delta_{2}\right)\right)$
- geometrical arguments from Batyrev-Nill can (probably) be adapted
- hard part: tuples containing empty simplices
- in course of this: study interplay between hollowness and Minkowski sums
- Structural result for high dimension and low mixed degree?
- Haase-Nill-Payne '08: $\operatorname{deg}(P)=k$ and $\operatorname{dim}(P) \geqslant f(k) \Rightarrow P$ is a Cayley polytope
- Is there an algebraic definition (as the degree of a polynomial)?

Thank you!

Some References

固 Gabriele Balletti and Christopher Borger, Families of lattice polytopes of mixed degree one, arXiv e-prints (2019), arXiv:1904.01343.
Eduardo Cattani, María Angélica Cueto, Alicia Dickenstein, Sandra Di Rocco, and Bernd Sturmfels, Mixed discriminants, Math. Z. 274 (2013), no. 3-4, 761-778. MR 3078246

Benjamin Nill, The mixed degree of families of lattice polytopes, http://arxiv.org/abs/1708.03250, 2017.
Benjamin Nill and Günter M. Ziegler, Projecting lattice polytopes without interior lattice points, Math. Oper. Res. 36 (2011), no. 3, 462-467. MR 2832401
目 Ivan Soprunov, Global residues for sparse polynomial systems, J. Pure Appl. Algebra 209 (2007), no. 2, 383-392. MR 2293316

