Christopher Borger (joint with G. Balletti)

Families of lattice polytopes of mixed degree one

Summer School on Geometric and Algebraic Combinatorics

June 26, 2019

Institut für Algebra und Geometrie Otto-von-Guericke-Universität Magdeburg

Lattice Polytopes

Definition (Lattice Polytope)

A lattice polytope is the convex hull of finitely many lattice points $v_1, \ldots, v_k \in \mathbb{Z}^d$.

Lattice Polytopes

Definition (Lattice Polytope)

A lattice polytope is the convex hull of finitely many lattice points $v_1, \ldots, v_k \in \mathbb{Z}^d$.

equivalence: up to lattice preserving affine transformations.

Lattice Polytopes

Definition (Lattice Polytope)

A lattice polytope is the convex hull of finitely many lattice points $v_1, \ldots, v_k \in \mathbb{Z}^d$.

equivalence: up to lattice preserving affine transformations.

In this talk: $P \subset \mathbb{R}^d$ always full-dimensional.

A little bit of Ehrhart theory

Consider the integer point counting function:

 $k \mapsto |kP \cap \mathbb{Z}^d|$

Theorem (Stanley '80)

$$\sum_{k\geqslant 0} |kP \cap \mathbb{Z}^d| t^k = \frac{h_P^*(t)}{(1-t)^{d+1}},$$

where h_P^* is a polynomial of degree $\leq d$ with coefficients in $\mathbb{Z}_{\geq 0}$.

A little bit of Ehrhart theory

Consider the integer point counting function:

 $k \mapsto |kP \cap \mathbb{Z}^d|$

Theorem (Stanley '80)

$$\sum_{k \geqslant 0} |kP \cap \mathbb{Z}^d| t^k = \frac{h_P^*(t)}{(1-t)^{d+1}},$$

where h_P^* is a polynomial of degree $\leq d$ with coefficients in $\mathbb{Z}_{\geq 0}$.

Definition

The degree of h_P^* is called the degree of P.

D

• measure for the complexity of a lattice polytope

- measure for the complexity of a lattice polytope
- $\deg(P) = 0 \Leftrightarrow P \cong \Delta_d = \operatorname{conv}(0, e_1, \dots, e_d)$
- invariant under taking lattice pyramids
- monotone with respect to inclusion

- measure for the complexity of a lattice polytope
- $\deg(P) = 0 \Leftrightarrow P \cong \Delta_d = \operatorname{conv}(0, e_1, \dots, e_d)$
- invariant under taking lattice pyramids
- monotone with respect to inclusion
- $d + 1 \deg(P) = \min\{k \in \mathbb{Z}_{>0} \colon \operatorname{int}(kP) \cap \mathbb{Z}^d \neq \emptyset\}$

 $=: \operatorname{codeg}(P)$, the codegree of P:

- measure for the complexity of a lattice polytope
- $\deg(P) = 0 \Leftrightarrow P \cong \Delta_d = \operatorname{conv}(0, e_1, \dots, e_d)$
- invariant under taking lattice pyramids
- monotone with respect to inclusion
- $d + 1 \deg(P) = \min\{k \in \mathbb{Z}_{>0} \colon \operatorname{int}(kP) \cap \mathbb{Z}^d \neq \emptyset\}$

=: codeg(P), the codegree of *P*:

Generalizing to tuples: Mixed Degree

Note:
$$kP = P + \cdots + P = \{p_1 + \cdots + p_k : p_i \in P\}$$

Definition

Mixed codegree: $mcd(P_1, \ldots, P_d) = min\{k \in \mathbb{Z}_{>0} : \exists i_1 < \cdots < i_k \text{ with } int(P_{i_1} + \cdots + P_{i_k}) \cap \mathbb{Z}^d \neq \emptyset\}$ (if $P_1 + \cdots + P_d \cap \mathbb{Z}^d = \emptyset$, set mcd = d + 1)

Mixed degree: $md(P_1, \ldots, P_d) := d + 1 - mcd(P_1, \ldots, P_d)$.

Generalizing to tuples: Mixed Degree

Note:
$$kP = P + \cdots + P = \{p_1 + \cdots + p_k : p_i \in P\}$$

Definition

Mixed codegree: $mcd(P_1, \ldots, P_d) = min\{k \in \mathbb{Z}_{>0} : \exists i_1 < \cdots < i_k \text{ with } int(P_{i_1} + \cdots + P_{i_k}) \cap \mathbb{Z}^d \neq \emptyset\}$ (if $P_1 + \cdots + P_d \cap \mathbb{Z}^d = \emptyset$, set mcd = d + 1)

Mixed degree:
$$\operatorname{md}(P_1, \ldots, P_d) := d + 1 - \operatorname{mcd}(P_1, \ldots, P_d).$$

- $\mathsf{md}(P,\ldots,P) = \mathsf{deg}(P)$
- monotone with respect to inclusion

Generalizing to tuples: Mixed Degree

Note:
$$kP = P + \cdots + P = \{p_1 + \cdots + p_k : p_i \in P\}$$

Definition

Mixed codegree: $mcd(P_1, \ldots, P_d) = min\{k \in \mathbb{Z}_{>0} : \exists i_1 < \cdots < i_k \text{ with } int(P_{i_1} + \cdots + P_{i_k}) \cap \mathbb{Z}^d \neq \emptyset\}$ (if $P_1 + \cdots + P_d \cap \mathbb{Z}^d = \emptyset$, set mcd = d + 1)

Mixed degree:
$$md(P_1, \ldots, P_d) := d + 1 - mcd(P_1, \ldots, P_d)$$
.

- $md(P, \ldots, P) = deg(P)$
- monotone with respect to inclusion
- should measure the complexity of a tuple

The mixed degree: Examples

The mixed degree: Examples

The mixed degree: Examples

 $\mathsf{mcd}(\Delta_2, P) = 1 \Rightarrow \mathsf{md}(\Delta_2, P) = 2$

Theorem (Cattani et al. '11, Nill '17)

 $P_1, \ldots, P_d \subset \mathbb{R}^d$ full-dimensional: $\mathsf{md}(P_1, \ldots, P_d) = 0 \Leftrightarrow (P_1, \ldots, P_d) \cong (\Delta_d, \ldots, \Delta_d)$

Theorem (Cattani et al. '11, Nill '17)

 $P_1, \dots, P_d \subset \mathbb{R}^d \text{ full-dimensional:} \\ \mathsf{md}(P_1, \dots, P_d) = 0 \Leftrightarrow (P_1, \dots, P_d) \cong (\Delta_d, \dots, \Delta_d)$

equivalence: common lattice preserving affine transformation + individual translations

Theorem (Cattani et al. '11, Nill '17)

 $P_1, \ldots, P_d \subset \mathbb{R}^d \text{ full-dimensional:} \\ \mathsf{md}(P_1, \ldots, P_d) = 0 \Leftrightarrow (P_1, \ldots, P_d) \cong (\Delta_d, \ldots, \Delta_d)$

 $\ensuremath{\mathsf{equivalence:}}$ common lattice preserving affine transformation + individual translations

Note: $md(P_1, \ldots, P_d) = 0 \Leftrightarrow P_1 + \cdots + P_d$ is hollow.

Next step: Mixed Degree one

Note: $md(P_1, \ldots, P_d) \leq 1$ iff $P_{i_1} + \cdots + P_{i_{d-1}}$ is hollow for any choice $1 \leq i_1 < \cdots < i_{d-1} \leq d$.

Next step: Mixed Degree one

Note: $\operatorname{md}(P_1, \ldots, P_d) \leq 1$ iff $P_{i_1} + \cdots + P_{i_{d-1}}$ is hollow for any choice $1 \leq i_1 < \cdots < i_{d-1} \leq d$.

Theorem (Soprunov '07, Nill '17)

For $P_1, \ldots, P_d \subset \mathbb{R}^d$ full-dimensional:

$$\mathsf{MV}(P_1,\ldots,P_d) - 1 \leq \mathsf{int}(P_1 + \cdots + P_d) \cap \mathbb{Z}^d,$$

with equality iff $md(P_1, \ldots, P_d) \leq 1$.

Soprunov's Question: What are the tuples of lattice polytopes for which the upper bound is attained?

Results for Mixed Degree one

Theorem (Batyrev-Nill '04 (unmixed))

- $P \subset \mathbb{R}^d$ with deg $(P) \leq 1$. Then either
 - P is the (d-2)-fold pyramid over $2\Delta_2$, or
 - there is a lattice projection of P onto Δ_{d-1} .

Results for Mixed Degree one

Theorem (Batyrev-Nill '04 (unmixed))

- $P \subset \mathbb{R}^d$ with deg $(P) \leq 1$. Then either
 - P is the (d-2)-fold pyramid over $2\Delta_2$, or
 - there is a lattice projection of P onto Δ_{d-1} .

Theorem (Balletti-B '19)

 $P_1,\ldots,P_d \subset \mathbb{R}^d$ with $\mathsf{md}(P_1,\ldots,P_d) \leqslant 1$ and $d \geqslant 4.$ Either

- P_1, \ldots, P_d is among finitely many exceptional families, or
- P_1, \ldots, P_d have common projection onto Δ_{d-1} .

Results for Mixed Degree one

Theorem (Batyrev-Nill '04 (unmixed))

- $P \subset \mathbb{R}^d$ with deg $(P) \leq 1$. Then either
 - P is the (d-2)-fold pyramid over $2\Delta_2$, or
 - there is a lattice projection of P onto Δ_{d-1} .

Theorem (Balletti-B '19)

 $P_1,\ldots,P_d \subset \mathbb{R}^d$ with $\mathsf{md}(P_1,\ldots,P_d) \leqslant 1$ and $d \geqslant 4.$ Either

- P_1, \ldots, P_d is among finitely many exceptional families, or
- P_1, \ldots, P_d have common projection onto Δ_{d-1} .

For d = 3 there exist infinitely many exceptional families.

Example with projection

Example without projection

 $\mathsf{md}(P_1,\ldots,P_d) \leq 1$ iff $P_{i_1} + \cdots + P_{i_{d-1}}$ is hollow for any choice $1 \leq i_1 < \cdots < i_{d-1} \leq d$.

Theorem (Nill-Ziegler '11)

Let $P \subset \mathbb{R}^d$ be a hollow lattice polytope. Then either

- P admits a lattice projection onto a hollow (d-1)-polytope, or
- P is one of finitely many exceptions.

 $\mathsf{md}(P_1,\ldots,P_d) \leq 1$ iff $P_{i_1} + \cdots + P_{i_{d-1}}$ is hollow for any choice $1 \leq i_1 < \cdots < i_{d-1} \leq d$.

Theorem (Nill-Ziegler '11)

Let $P = P_1 + \cdots + P_{d-1}$ be a hollow d-dimensional lattice polytope. Then either

- P admits a lattice projection onto $(d-1)\Delta_{d-1}$, or
- P is one of finitely many exceptions.

 \Rightarrow leads to finiteness of tuples whenever any sum $P_{i_1} + \cdots + P_{i_{d-1}}$ is exceptional! (there are some things to be shown on the way)

What is left: Any (d-1)-subtuple of P_1, \ldots, P_d has a common projection onto Δ_{d-1} .

- (at least) two of the projections are the same \Rightarrow there exists a common projection for the whole P_1, \ldots, P_d
- ② all projections are different ⇒ any P_i has d 1 different projections onto Δ_{d-1} .

What is left: Any (d-1)-subtuple of P_1, \ldots, P_d has a common projection onto Δ_{d-1} .

- (at least) two of the projections are the same \Rightarrow there exists a common projection for the whole P_1, \ldots, P_d
- 𝔅 all projections are different ⇒ any P_i has d 1 different projections onto $Δ_{d-1}$.

Lemma

Let $P \subset \mathbb{R}^d$ be a lattice polytope that has 3 different lattice projections onto Δ_{d-1} . Then $P \cong \Delta_d$.

What is left: Any (d-1)-subtuple of P_1, \ldots, P_d has a common projection onto Δ_{d-1} .

- (at least) two of the projections are the same \Rightarrow there exists a common projection for the whole P_1, \ldots, P_d
- 𝔅 all projections are different ⇒ any P_i has d 1 different projections onto $Δ_{d-1}$.

Lemma

Let $P \subset \mathbb{R}^d$ be a lattice polytope that has 3 different lattice projections onto Δ_{d-1} . Then $P \cong \Delta_d$.

Lemma

For $d \ge 5$ the only tuple P_1, \ldots, P_d for which all (d-1)-subtuples have different common projections onto Δ_{d-1} is $(\Delta_d, \ldots, \Delta_d)$.

The case d = 3

Theorem (Balletti-B '19)

Let $P_1, P_2, P_3 \subset \mathbb{R}^3$ be an exceptional triple with $md(P_1, P_2, P_3) = 1$. Then it is equivalent to a triple in a list of 279 triples or it is contained in one of finitely many 1-parameter families of triples.

• What are the exceptional families of mixed degree one? Can they be described easily (for *d* large enough)?

- What are the exceptional families of mixed degree one? Can they be described easily (for *d* large enough)?
 - Conjecture: all contained in $(2\Delta_d, \Delta_d, \dots, \Delta_d)$ or $(\mathcal{P}^{(d-2)}(2\Delta_2), \dots, \mathcal{P}^{(d-2)}(2\Delta_2))$
 - geometrical arguments from Batyrev-Nill can (probably) be adapted
 - hard part: tuples containing empty simplices
 - in course of this: study interplay between hollowness and Minkowski sums

- What are the exceptional families of mixed degree one? Can they be described easily (for *d* large enough)?
 - Conjecture: all contained in $(2\Delta_d, \Delta_d, \dots, \Delta_d)$ or $(\mathcal{P}^{(d-2)}(2\Delta_2), \dots, \mathcal{P}^{(d-2)}(2\Delta_2))$
 - geometrical arguments from Batyrev-Nill can (probably) be adapted
 - hard part: tuples containing empty simplices
 - in course of this: study interplay between hollowness and Minkowski sums
- Structural result for high dimension and low mixed degree?
 - Haase-Nill-Payne '08: $\deg(P)=k$ and $\dim(P) \geqslant f(k) \Rightarrow P$ is a Cayley polytope

- What are the exceptional families of mixed degree one? Can they be described easily (for *d* large enough)?
 - Conjecture: all contained in $(2\Delta_d, \Delta_d, \dots, \Delta_d)$ or $(\mathcal{P}^{(d-2)}(2\Delta_2), \dots, \mathcal{P}^{(d-2)}(2\Delta_2))$
 - geometrical arguments from Batyrev-Nill can (probably) be adapted
 - hard part: tuples containing empty simplices
 - in course of this: study interplay between hollowness and Minkowski sums
- Structural result for high dimension and low mixed degree?
 - Haase-Nill-Payne '08: $\deg(P)=k$ and $\dim(P) \geqslant f(k) \Rightarrow P$ is a Cayley polytope
- Is there an algebraic definition (as the degree of a polynomial)?

- What are the exceptional families of mixed degree one? Can they be described easily (for *d* large enough)?
 - Conjecture: all contained in $(2\Delta_d, \Delta_d, \dots, \Delta_d)$ or $(\mathcal{P}^{(d-2)}(2\Delta_2), \dots, \mathcal{P}^{(d-2)}(2\Delta_2))$
 - geometrical arguments from Batyrev-Nill can (probably) be adapted
 - hard part: tuples containing empty simplices
 - in course of this: study interplay between hollowness and Minkowski sums
- Structural result for high dimension and low mixed degree?
 - Haase-Nill-Payne '08: $\deg(P)=k$ and $\dim(P) \geqslant f(k) \Rightarrow P$ is a Cayley polytope
- Is there an algebraic definition (as the degree of a polynomial)?

Thank you!

Some References

- Gabriele Balletti and Christopher Borger, *Families of lattice polytopes of mixed degree one*, arXiv e-prints (2019), arXiv:1904.01343.
- Eduardo Cattani, María Angélica Cueto, Alicia Dickenstein, Sandra Di Rocco, and Bernd Sturmfels, *Mixed discriminants*, Math. Z. 274 (2013), no. 3-4, 761–778. MR 3078246
- Benjamin Nill, *The mixed degree of families of lattice polytopes*, http://arxiv.org/abs/1708.03250, 2017.
- Benjamin Nill and Günter M. Ziegler, Projecting lattice polytopes without interior lattice points, Math. Oper. Res. 36 (2011), no. 3, 462–467. MR 2832401
- Ivan Soprunov, Global residues for sparse polynomial systems, J. Pure Appl. Algebra 209 (2007), no. 2, 383–392. MR 2293316

