Wide hollow polytopes

Giulia Codenotti

joint work with Francisco Santos

0		0		0		0		0		0		0		0		0		0		0		0		0		0	
	0		0		0		0		0		0		0		0		0		0		0		0		0		c
0		o		o		0		o		0		o		0		0		o		0		0		o		o	
	0		0		0		0		0		0		0		0		0		0		0		0		0		c
0		0		0		0		0		0		0		0		0		o		0		0		o		o	
	0		0		0		0		0		0		0		0		0		0		0		0		0		c
0		0		0		0		0		0		0		0		0		0		0		0		0		0	
	0		0		0		0		0		0		0		0		0		0		0		0		0		c
0		0		0		0		0		0		0		0		0		0		0		0		0		0	

C: 1	-			
GIIII	a (.od	end	ott

Giulia Codenotti	Wide hollow polytopes	2/	15
		=/	

Convex bodies and lattice polytopes

A convex body:

Convex bodies and lattice polytopes

A convex body:

A lattice polytope:

Convex bodies and lattice polytopes

A convex body or lattice polytope is **hollow** (or lattice-free) if there are no lattice points in its interior.

Giulia Codenotti

Given K a convex body in \mathbb{R}^d ; and $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice,

Given K a convex body in \mathbb{R}^d ; and $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice,

Definition

 The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p).

Given K a convex body in \mathbb{R}^d ; and $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice,

Definition

 The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). Equivalently, it is the length of f(K).

Given K a convex body in \mathbb{R}^d ; and $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice,

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). Equivalently, it is the length of f(K).
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Given K a convex body in \mathbb{R}^d ; and $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice,

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). Equivalently, it is the length of f(K).
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Given K a convex body in \mathbb{R}^d ; and $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice,

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). Equivalently, it is the length of f(K).
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Given K a convex body in \mathbb{R}^d ; and $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice,

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). Equivalently, it is the length of f(K).
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Given K a convex body in \mathbb{R}^d ; and $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice,

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). Equivalently, it is the length of f(K).
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Given K a convex body in \mathbb{R}^d ; and $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice,

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). Equivalently, it is the length of f(K).
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Given K a convex body in \mathbb{R}^d ; and $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice,

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). Equivalently, it is the length of f(K).
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Given K a convex body in \mathbb{R}^d ; and $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice,

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). Equivalently, it is the length of f(K).
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Given K a convex body in \mathbb{R}^d ; and $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice,

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). Equivalently, it is the length of f(K).
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Given K a convex body in \mathbb{R}^d ; and $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice,

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). Equivalently, it is the length of f(K).
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Theorem (Flatness, Kinchine 1948)

If $K \subset \mathbb{R}^d$ is a hollow convex body, then its width is bounded by a constant $w_c(d)$.

Theorem (Flatness, Kinchine 1948)

If $K \subset \mathbb{R}^d$ is a hollow convex body, then its width is bounded by a constant $w_c(d)$.

Upper bounds for $w_c(d)$ are well studied, because of applications in integer linear programming.

Theorem (Flatness, Kinchine 1948)

If $K \subset \mathbb{R}^d$ is a hollow convex body, then its width is bounded by a constant $w_c(d)$.

Upper bounds for $w_c(d)$ are well studied, because of applications in integer linear programming.

Our goal: improve lower bounds on the flatness constant, that is, construct hollow convex bodies/polytopes of large width.

 $w_s(d) \leq w_p(d) \leq w_c(d)$

$$d \leq w_s(d) \leq w_p(d) \leq w_c(d)$$

$$d \leq w_s(d) \leq w_p(d) \leq w_c(d)$$

$$d \leq w_s(d) \leq w_p(d) \leq w_c(d)$$

$$d \leq w_s(d) \leq w_p(d) \leq w_c(d)$$

Variations on flatness constants

$$d \leq w_s(d) \leq w_p(d) \leq w_c(d)$$

Variations on flatness constants

$$d \leq w_s(d) \leq w_p(d) \leq w_c(d)$$

$$d \leq w_s(d) \leq w_p(d) \leq w_c(d)$$

d	$w_s(d)$	$w_p(d)$	$w_c(d)$
1	1	1	1
2	2	2	$1 + \frac{2}{\sqrt{3}}$ [Hur90]

$$d \leq w_s(d) \leq w_p(d) \leq w_c(d)$$

d	$w_s(d)$	$w_p(d)$	$w_c(d)$			
1	1	1	1			
2	2	2	$1 + \frac{2}{\sqrt{3}}$ [Hur90]			
3	3 [AKW17]	3 [AKW17]	$\geq 2 + \sqrt{2}$ [C-S18]			

$$d \leq w_s(d) \leq w_p(d) \leq w_c(d)$$

d	$w_s(d)$	$w_p(d)$	$w_c(d)$			
1	1	1	1			
2	2	2	$1 + \frac{2}{\sqrt{3}}$ [Hur90]			
3	3 [AKW17]	3 [AKW17]	$\geq 2 + \sqrt{2}$ [C-S18]			
4	??	??	??			

$$d \leq w_s(d) \leq w_p(d) \leq w_c(d)$$

d	v	$v_s(d)$	v	$v_p(d)$	$w_c(d)$		
1	1		1		1		
2	2		2		$1 + \frac{2}{\sqrt{3}}$	[Hur90]	
3	3	[AKW17]	3	[AKW17]	$\geq 2 + \sqrt{2}$	[C-S18]	
4	??		??		??		
14			≥ 15	[C-S18]			
404	\geq 408	[C-S18]					

A triangular lattice and a unimodular triangle *ABC*.

Lattice triangle circumscribed around *ABC*; only lattice triangle of width 2.

This triangle, also circumscribed around *ABC*, has lattice width $1 + \frac{2}{\sqrt{3}}$.

This triangle, also circumscribed around *ABC*, has lattice width $1 + \frac{2}{\sqrt{3}}$.

Theorem (Hurkens 1990)

This triangle has the largest lattice width of any hollow convex body in \mathbb{R}^2 ; that is, $w_c(2) = 1 + \frac{2}{\sqrt{3}}$.

$w_c(3)$: A wide tetrahedron

In the (affine) lattice $\{(a, b, c) : a, b, c \in 1 + 2\mathbb{Z}, a + b + c \in 1 + 4\mathbb{Z}\}$,

$$\begin{split} \mathcal{T} = \mathsf{conv}\{(-1,1,1),(-1,-1,-1),\\ (1,-1,1),(1,1,-1)\} \end{split}$$

is a unimodular tetrahedron.

In the (affine) lattice $\{(a, b, c) : a, b, c \in 1 + 2\mathbb{Z}, a + b + c \in 1 + 4\mathbb{Z}\}$,

Figure: Δ_0

$$\begin{split} \mathcal{T} = \mathsf{conv}\{(-1,1,1),(-1,-1,-1), \\ (1,-1,1),(1,1,-1)\} \end{split}$$

is a unimodular tetrahedron.

 Δ_0 is the lattice tetrahedron circumscribed to ${\mathcal T}$ with vertices

A = (3, 1, 5), B = (-1, 3, -5), C = (-3, -1, 5),D = (1, -3, -5).

It has width 3.

$w_c(3)$: A wide tetrahedron

Figure: Δ has width $2 + \sqrt{2}$

We can modify Δ_0 to a tetrahedron Δ of width $2+\sqrt{2}.$ Thus,

Corollary (C.-Santos, 2018+)

$$w_c(3)\geq 2+\sqrt{2}.$$

$w_c(3)$: A wide tetrahedron

Figure: Δ has width $2 + \sqrt{2}$

We can modify Δ_0 to a tetrahedron Δ of width $2+\sqrt{2}.$ Thus,

$$w_c(3)\geq 2+\sqrt{2}.$$

Conjecture

This is the hollow 3-body of maximum width. That is, $w_c(3) = 2 + \sqrt{2}$.

Interlude: Direct sum of convex bodies

Definition

Let $C_i \subset \mathbb{R}^{d_i}$ be convex bodies containing the origin. Their **direct sum** is the following convex body in $\mathbb{R}^{d_1+\dots+d_m}$:

$$C_{1} \oplus \cdots \oplus C_{m} =$$

$$= \operatorname{conv} \left(\bigcup_{i=1}^{m} (0 \times \cdots \times 0 \times C_{i} \times 0 \times \cdots \times 0) \right)$$

$$= \left\{ (\lambda_{1}x_{1}, \dots, \lambda_{m}x_{m}) : x_{i} \in C_{i}, \lambda_{i} \ge 0, \sum_{i=1}^{m} \lambda_{i} = 1 \right\}$$

Interlude: Direct sum of convex bodies

Definition

Let $C_i \subset \mathbb{R}^{d_i}$ be convex bodies containing the origin. Their **direct sum** is the following convex body in $\mathbb{R}^{d_1+\dots+d_m}$:

$$C_{1} \oplus \cdots \oplus C_{m} =$$

$$= \operatorname{conv} \left(\bigcup_{i=1}^{m} (0 \times \cdots \times 0 \times C_{i} \times 0 \times \cdots \times 0) \right)$$

$$= \left\{ (\lambda_{1}x_{1}, \dots, \lambda_{m}x_{m}) : x_{i} \in C_{i}, \lambda_{i} \ge 0, \sum_{i=1}^{m} \lambda_{i} = 1 \right\}$$

Interlude: Direct sum of convex bodies

Definition

Let $C_i \subset \mathbb{R}^{d_i}$ be convex bodies containing the origin. Their **direct sum** is the following convex body in $\mathbb{R}^{d_1+\dots+d_m}$:

$$C_{1} \oplus \cdots \oplus C_{m} =$$

$$= \operatorname{conv} \left(\bigcup_{i=1}^{m} (0 \times \cdots \times 0 \times C_{i} \times 0 \times \cdots \times 0) \right)$$

$$= \left\{ (\lambda_{1}x_{1}, \dots, \lambda_{m}x_{m}) : x_{i} \in C_{i}, \lambda_{i} \ge 0, \sum_{i=1}^{m} \lambda_{i} = 1 \right\}$$

It's easy to compute the width of direct sums:

width
$$(C_1 \oplus \cdots \oplus C_m) = \min_i \operatorname{width}(C_i),$$

It's easy to compute the width of direct sums:

width
$$(C_1 \oplus \cdots \oplus C_m) = \min_i \operatorname{width}(C_i),$$

and to observe that if all summands are lattice polytopes, so is the sum.

It's easy to compute the width of direct sums:

width
$$(C_1 \oplus \cdots \oplus C_m) = \min_i \operatorname{width}(C_i),$$

and to observe that if all summands are lattice polytopes, so is the sum. Regarding hollowness:

Lemma ((special case of) Averkov-Basu 2015)

If C is hollow, then $\bigoplus_{i=1}^{m} mC$ is hollow of width m width(C).

Hurkens' triangle, circumscribed to the unimodular triangle *ABC*

We refine the lattice, in black we have $\Lambda' = \frac{1}{7}\Lambda$

Hurkens' triangle has a nice *rational* approximation T of width 15/7 = 2.1429.

Hurkens' triangle has a nice *rational* approximation T of width 15/7 = 2.1429.

From the direct sum construction, with summands equal to 7T, follows

Corollary (C.-Santos 2018+)

There is a 14-dimensional hollow lattice polytope of width 15. It has 21 vertices and $2^7 + 7$ facets.

$w_s(404)$: A lattice simplex of large width

Regarding lattice simplices, we can prove the following:

Lemma

There is a rational hollow 4-simplex of width 4 $\left(1 + \frac{1}{101}\right)$.

This is obtained by "pushing out" a facet of a known empty lattice 4-simplex of width 4.

Regarding lattice simplices, we can prove the following:

Lemma

There is a rational hollow 4-simplex of width 4 $\left(1 + \frac{1}{101}\right)$.

This is obtained by "pushing out" a facet of a known empty lattice 4-simplex of width 4. From the direct sum construction, we obtain

Corollary (C.-Santos 2018+)

There is a hollow 404-simplex of width 408.

We also apply the direct sum construction to obtain asymptotics of our constants. In particular,

Theorem ((Codenotti-S. 2018+))

$$\lim_{d\to\infty} \frac{w_p(d)}{d} = \lim_{d\to\infty} \frac{w_c(d)}{d} = \sup_{d\to\infty} \frac{w_c(d)}{d} \ge \frac{2+\sqrt{2}}{3} = 1.138\dots,$$
$$\lim_{d\to\infty} \frac{w_s(d)}{d} \ge \frac{102}{101} = 1.0099\dots$$

where on the right we have used $w_c(3)/3 \ge \frac{2+\sqrt{2}}{3}$, based on the tetrahedron of width $2 + \sqrt{2}$, and $w_s(404)/404 \ge \frac{102}{101}$ from the 404-dimensional simplex.

Thank you for your attention!

Giulia Codenotti, Francisco Santos. Hollow polytopes of large width. Preprint, 17 pages, December 2018. http://arxiv.org/abs/1812.00916