Wide hollow polytopes

Giulia Codenotti

joint work with Francisco Santos

June 17th, 2019
GAC summer school

Lattices

-

	\bigcirc		\bigcirc		-		\bigcirc		-		\bigcirc		0		\bigcirc		\bigcirc		-		\bigcirc	\bigcirc
\bigcirc		0		\bigcirc		-		\bigcirc		\bigcirc		\bigcirc										
	0		\bigcirc		\bigcirc		\bigcirc		-		0		-		\bigcirc		0		-		-	-
\bigcirc		-		-		\bigcirc		0		-		\bigcirc		-		\bigcirc		\bigcirc		-		
	\bigcirc		0		\bigcirc		0		\bigcirc		0		-		\bigcirc		0		\bigcirc		-	\bigcirc
-		-		-		\bigcirc		-		-		-		-		0		-		\bigcirc		
	\bigcirc		\bigcirc		\bigcirc		0		-		\bigcirc		0		\bigcirc		-		\bigcirc		-	\bigcirc
\bigcirc		0		\bigcirc		\bigcirc		-		\bigcirc		-		-		\bigcirc		\bigcirc		\bigcirc		
	\bigcirc		\bigcirc		\bigcirc		0		\bigcirc		0		0		\bigcirc		0		\bigcirc		-	0

0
\square

0
-

0
-
\circ
o
0
0
0
0
0
0
0
0
0
0

Lattices

0		0		0		0		0		0		0		0		0		0		0		0		0		0
	0		0		0		0		0		0		0		0		0		0		0		0		0	
0		\bigcirc		\bigcirc		n		\bigcirc		\square		n		\cdots		n		\sim								

A lattice $\Lambda \subset \mathbb{R}^{n}$ is a discrete additive subgroup.

Lattices

0	0	0	0	0	0	0	0	0	0	0	0

-

$$
\circ
$$

-

-
-
-
-

\circ
-
-

Definition

A lattice $\Lambda \subset \mathbb{R}^{n}$ is a discrete additive subgroup. $\Lambda \cong \mathbb{Z}^{i}$, for some i.

Lattices

$$
0
$$

-

0
0
0
0
0
0
0
0
0
○
o
o
o
-
-
o
\circ
\circ
-
-
○
-
0

Definition

A lattice $\Lambda \subset \mathbb{R}^{n}$ is a discrete additive subgroup. $\Lambda \cong \mathbb{Z}^{i}$, for some i.

- The dual lattice $\Lambda^{*} \subseteq\left(\mathbb{R}^{n}\right)^{*}$ of Λ is the lattice of functionals taking integer values on points of Λ.
-

0
-
0
0
o
0
o
0
0
0
0
o

0
0
0
0
0
0
0
0
0
0
0
0
-
0
0
0
0
0
0
0
0
0
0
0
o

Convex bodies and lattice polytopes

A convex body:

Convex bodies and lattice polytopes

A convex body:
A lattice polytope:

Convex bodies and lattice polytopes

A convex body:

A lattice polytope:

A convex body or lattice polytope is hollow (or lattice-free) if there are no lattice points in its interior.

Width

Given K a convex body in \mathbb{R}^{d}; and $\mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice,

Width

Given K a convex body in \mathbb{R}^{d}; and $\mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice,

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$.

Width

Given K a convex body in \mathbb{R}^{d}; and $\mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice,

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. Equivalently, it is the length of $f(K)$.

Width

Given K a convex body in \mathbb{R}^{d}; and $\mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice,

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. Equivalently, it is the length of $f(K)$.
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $_{\Lambda}(K)$.

Width

Given K a convex body in \mathbb{R}^{d}; and $\mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice,

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. Equivalently, it is the length of $f(K)$.
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $_{\Lambda}(K)$.

Width

Given K a convex body in \mathbb{R}^{d}; and $\mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice,

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. Equivalently, it is the length of $f(K)$.
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $_{\Lambda}(K)$.

Width

Given K a convex body in \mathbb{R}^{d}; and $\mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice,

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. Equivalently, it is the length of $f(K)$.
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $_{\Lambda}(K)$.

Width

Given K a convex body in \mathbb{R}^{d}; and $\mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice,

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. Equivalently, it is the length of $f(K)$.
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $_{\Lambda}(K)$.

Width: 2

Width

Given K a convex body in \mathbb{R}^{d}; and $\mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice,

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. Equivalently, it is the length of $f(K)$.
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $_{\Lambda}(K)$.

Width: 2

Width

Given K a convex body in \mathbb{R}^{d}; and $\mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice,

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. Equivalently, it is the length of $f(K)$.
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $_{\Lambda}(K)$.

Width: 2

Width: 1

Width

Given K a convex body in \mathbb{R}^{d}; and $\mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice,

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. Equivalently, it is the length of $f(K)$.
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $_{\Lambda}(K)$.

Width: 2

Width: 1

Width

Given K a convex body in \mathbb{R}^{d}; and $\mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice,

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. Equivalently, it is the length of $f(K)$.
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width ${ }_{\wedge}(K)$.

Width: 2

Width: 1

Width

Given K a convex body in \mathbb{R}^{d}; and $\mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice,

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. Equivalently, it is the length of $f(K)$.
- The (lattice) width of K is the minimum width w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $_{\Lambda}(K)$.

Width: 2

Width: 1

Width: 2

Flatness theorem

Theorem (Flatness, Kinchine 1948)
If $K \subset \mathbb{R}^{d}$ is a hollow convex body, then its width is bounded by a constant $w_{c}(d)$.

Flatness theorem

Theorem (Flatness, Kinchine 1948)
If $K \subset \mathbb{R}^{d}$ is a hollow convex body, then its width is bounded by a constant $w_{c}(d)$.

Upper bounds for $w_{c}(d)$ are well studied, because of applications in integer linear programming.

Flatness theorem

Theorem (Flatness, Kinchine 1948)
If $K \subset \mathbb{R}^{d}$ is a hollow convex body, then its width is bounded by a constant $w_{c}(d)$.

Upper bounds for $w_{c}(d)$ are well studied, because of applications in integer linear programming.

Our goal: improve lower bounds on the flatness constant, that is, construct hollow convex bodies/polytopes of large width.

Variations on flatness constants

We denote $w_{c}(d), w_{p}(d), w_{s}(d)$ the maximum width among hollow convex bodies, lattice polytopes, and lattice simplices.

Variations on flatness constants

We denote $w_{c}(d), w_{p}(d), w_{s}(d)$ the maximum width among hollow convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

$$
w_{s}(d) \leq w_{p}(d) \leq w_{c}(d)
$$

Variations on flatness constants

We denote $w_{c}(d), w_{p}(d), w_{s}(d)$ the maximum width among hollow convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

$$
d \leq w_{s}(d) \leq w_{p}(d) \leq w_{c}(d)
$$

Variations on flatness constants

We denote $w_{c}(d), w_{p}(d), w_{s}(d)$ the maximum width among hollow convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

$$
d \leq w_{s}(d) \leq w_{p}(d) \leq w_{c}(d)
$$

Variations on flatness constants

We denote $w_{c}(d), w_{p}(d), w_{s}(d)$ the maximum width among hollow convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

$$
d \leq w_{s}(d) \leq w_{p}(d) \leq w_{c}(d)
$$

Variations on flatness constants

We denote $w_{c}(d), w_{p}(d), w_{s}(d)$ the maximum width among hollow convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

$$
d \leq w_{s}(d) \leq w_{p}(d) \leq w_{c}(d)
$$

Variations on flatness constants

We denote $w_{c}(d), w_{p}(d), w_{s}(d)$ the maximum width among hollow convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

$$
d \leq w_{s}(d) \leq w_{p}(d) \leq w_{c}(d)
$$

Variations on flatness constants

We denote $w_{c}(d), w_{p}(d), w_{s}(d)$ the maximum width among hollow convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

$$
d \leq w_{s}(d) \leq w_{p}(d) \leq w_{c}(d)
$$

Variations on flatness constants

We denote $w_{c}(d), w_{p}(d), w_{s}(d)$ the maximum width among hollow convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

$$
d \leq w_{s}(d) \leq w_{p}(d) \leq w_{c}(d)
$$

What can we say in low dimension?

d	$w_{s}(d)$	$w_{p}(d)$	$w_{c}(d)$
1	1	1	1
2	2	2	$1+\frac{2}{\sqrt{3}} \quad$ [Hur90]

Variations on flatness constants

We denote $w_{c}(d), w_{p}(d), w_{s}(d)$ the maximum width among hollow convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

$$
d \leq w_{s}(d) \leq w_{p}(d) \leq w_{c}(d)
$$

What can we say in low dimension?

d	$w_{s}(d)$	$w_{p}(d)$	$w_{c}(d)$
1	1	1	1
2	2	2	$1+\frac{2}{\sqrt{3}}$
	[Hur90]		
3	$3 \quad[A K W 17]$	$3 \quad[A K W 17]$	$\geq 2+\sqrt{2} \quad$ [C-S18]

Variations on flatness constants

We denote $w_{c}(d), w_{p}(d), w_{s}(d)$ the maximum width among hollow convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

$$
d \leq w_{s}(d) \leq w_{p}(d) \leq w_{c}(d)
$$

What can we say in low dimension?

d	$w_{s}(d)$	$w_{p}(d)$	$w_{c}(d)$	
1	1	1	1	
2	2	2		$1+\frac{2}{\sqrt{3}}$
[Hur90]				
3	3	$[A K W 17]$	3	[AKW17]
4	$? ?$	$? ?$??
	[C-S18]			

Variations on flatness constants

We denote $w_{c}(d), w_{p}(d), w_{s}(d)$ the maximum width among hollow convex bodies, lattice polytopes, and lattice simplices.
Some facts to start with:

$$
d \leq w_{s}(d) \leq w_{p}(d) \leq w_{c}(d)
$$

What can we say in low dimension?

d	$w_{s}(d)$		$w_{p}(d)$	$w_{c}(d)$	
1	1		1	1	
2	2		2	$1+\frac{2}{\sqrt{3}}$	[Hur90]
3	3	[AKW17]	3 [AKW17]	$\geq 2+\sqrt{2}$	[C-S18]
4	??		??	??	
14			$\geq 15 \quad[\mathrm{C}-\mathrm{S} 18]$		
404	≥ 408	[C-S18]			

$w_{c}(2):$ Hurkens' construction

$w_{c}(2):$ Hurkens' construction

Lattice triangle circumscribed around $A B C$; only lattice triangle of width 2.

$w_{c}(2):$ Hurkens' construction

This triangle, also circumscribed around $A B C$, has lattice width $1+\frac{2}{\sqrt{3}}$.

$w_{c}(2):$ Hurkens' construction

This triangle, also circumscribed around $A B C$, has lattice width $1+\frac{2}{\sqrt{3}}$.

Theorem (Hurkens 1990)

This triangle has the largest lattice width of any hollow convex body in \mathbb{R}^{2}; that is, $w_{c}(2)=1+\frac{2}{\sqrt{3}}$.

$w_{c}(3):$ A wide tetrahedron

In the (affine) lattice $\{(a, b, c): a, b, c \in 1+2 \mathbb{Z}, a+b+c \in 1+4 \mathbb{Z}\}$,

$$
\begin{gathered}
T=\operatorname{conv}\{(-1,1,1),(-1,-1,-1), \\
(1,-1,1),(1,1,-1)\}
\end{gathered}
$$

is a unimodular tetrahedron.

$w_{c}(3)$: A wide tetrahedron

In the (affine) lattice $\{(a, b, c): a, b, c \in 1+2 \mathbb{Z}, a+b+c \in 1+4 \mathbb{Z}\}$,

Figure: Δ_{0}

$$
\begin{array}{r}
T=\operatorname{conv}\{(-1,1,1),(-1,-1,-1) \\
(1,-1,1),(1,1,-1)\}
\end{array}
$$

is a unimodular tetrahedron.
Δ_{0} is the lattice tetrahedron circumscribed to T with vertices

$$
\begin{aligned}
& A=(3,1,5), \\
& B=(-1,3,-5), \\
& C=(-3,-1,5), \\
& D=(1,-3,-5) .
\end{aligned}
$$

It has width 3.

$w_{c}(3)$: A wide tetrahedron

Figure: Δ has width $2+\sqrt{2}$

$w_{c}(3)$: A wide tetrahedron

We can modify Δ_{0} to a tetrahedron Δ of width $2+\sqrt{2}$.
Thus,
Corollary (C.-Santos, 2018+)
$w_{c}(3) \geq 2+\sqrt{2}$.

Conjecture

This is the hollow 3-body of maximum width. That is, $w_{c}(3)=2+\sqrt{2}$.
Figure: Δ has width $2+\sqrt{2}$

Interlude: Direct sum of convex bodies

Definition

Let $C_{i} \subset \mathbb{R}^{d_{i}}$ be convex bodies containing the origin. Their direct sum is the following convex body in $\mathbb{R}^{d_{1}+\cdots+d_{m}}$:

$$
\begin{aligned}
& C_{1} \oplus \cdots \oplus C_{m}= \\
& =\operatorname{conv}\left(\bigcup_{i=1}^{m}\left(0 \times \cdots \times 0 \times C_{i} \times 0 \times \cdots \times 0\right)\right) \\
& =\left\{\left(\lambda_{1} x_{1}, \ldots, \lambda_{m} x_{m}\right): x_{i} \in C_{i}, \lambda_{i} \geq 0, \sum_{i=1}^{m} \lambda_{i}=1\right\}
\end{aligned}
$$

Interlude: Direct sum of convex bodies

Definition

Let $C_{i} \subset \mathbb{R}^{d_{i}}$ be convex bodies containing the origin. Their direct sum is the following convex body in $\mathbb{R}^{d_{1}+\cdots+d_{m}}$:

$$
\begin{aligned}
& C_{1} \oplus \cdots \oplus C_{m}= \\
& =\operatorname{conv}\left(\bigcup_{i=1}^{m}\left(0 \times \cdots \times 0 \times C_{i} \times 0 \times \cdots \times 0\right)\right) \\
& =\left\{\left(\lambda_{1} x_{1}, \ldots, \lambda_{m} x_{m}\right): x_{i} \in C_{i}, \lambda_{i} \geq 0, \sum_{i=1}^{m} \lambda_{i}=1\right\}
\end{aligned}
$$

Interlude: Direct sum of convex bodies

Definition

Let $C_{i} \subset \mathbb{R}^{d_{i}}$ be convex bodies containing the origin. Their direct sum is the following convex body in $\mathbb{R}^{d_{1}+\cdots+d_{m}}$:

$$
\begin{aligned}
& C_{1} \oplus \cdots \oplus C_{m}= \\
& =\operatorname{conv}\left(\bigcup_{i=1}^{m}\left(0 \times \cdots \times 0 \times C_{i} \times 0 \times \cdots \times 0\right)\right) \\
& =\left\{\left(\lambda_{1} x_{1}, \ldots, \lambda_{m} x_{m}\right): x_{i} \in C_{i}, \lambda_{i} \geq 0, \sum_{i=1}^{m} \lambda_{i}=1\right\}
\end{aligned}
$$

Interlude: Properties of the direct sum

It's easy to compute the width of direct sums:

$$
\text { width }\left(C_{1} \oplus \cdots \oplus C_{m}\right)=\min _{i} \text { width }\left(C_{i}\right)
$$

Interlude: Properties of the direct sum

It's easy to compute the width of direct sums:

$$
\text { width }\left(C_{1} \oplus \cdots \oplus C_{m}\right)=\min _{i} \text { width }\left(C_{i}\right)
$$

and to observe that if all summands are lattice polytopes, so is the sum.

Interlude: Properties of the direct sum

It's easy to compute the width of direct sums:

$$
\text { width }\left(C_{1} \oplus \cdots \oplus C_{m}\right)=\min _{i} \text { width }\left(C_{i}\right)
$$

and to observe that if all summands are lattice polytopes, so is the sum.
Regarding hollowness:
Lemma ((special case of) Averkov-Basu 2015)
If C is hollow, then $\bigoplus_{i=1}^{m} m C$ is hollow of width $m \cdot$ width (C).

$w_{p}(14)$: A lattice polytope of large width

Hurkens' triangle, circumscribed to the unimodular triangle $A B C$

$w_{p}(14):$ A lattice polytope of large width

We refine the lattice, in black we have $\Lambda^{\prime}=\frac{1}{7} \Lambda$

$w_{p}(14)$: A lattice polytope of large width

Hurkens' triangle has a nice rational approximation T of width $15 / 7=$ 2.1429.

$w_{p}(14)$: A lattice polytope of large width

Hurkens' triangle has a nice rational approximation T of width $15 / 7=$ 2.1429.

From the direct sum construction, with summands equal to $7 T$, follows

Corollary (C.-Santos 2018+)

There is a 14-dimensional hollow lattice polytope of width 15 . It has 21 vertices and $2^{7}+7$ facets.

$w_{s}(404)$: A lattice simplex of large width

Regarding lattice simplices, we can prove the following:

Lemma

There is a rational hollow 4-simplex of width $4\left(1+\frac{1}{101}\right)$.
This is obtained by "pushing out" a facet of a known empty lattice 4-simplex of width 4.

$w_{s}(404):$ A lattice simplex of large width

Regarding lattice simplices, we can prove the following:

Lemma

There is a rational hollow 4-simplex of width $4\left(1+\frac{1}{101}\right)$.
This is obtained by "pushing out" a facet of a known empty lattice 4 -simplex of width 4. From the direct sum construction, we obtain

Corollary (C.-Santos 2018+)

There is a hollow 404-simplex of width 408.

Asymptotics of w_{c}, w_{p} and w_{s}

We also apply the direct sum construction to obtain asymptotics of our constants. In particular,

Theorem ((Codenotti-S. 2018+))

$$
\begin{aligned}
& \lim _{d \rightarrow \infty} \frac{w_{p}(d)}{d}=\lim _{d \rightarrow \infty} \frac{w_{c}(d)}{d}=\sup _{d \rightarrow \infty} \frac{w_{c}(d)}{d} \geq \frac{2+\sqrt{2}}{3}=1.138 \ldots, \\
& \lim _{d \rightarrow \infty} \frac{w_{s}(d)}{d} \geq \frac{102}{101}=1.0099 \ldots
\end{aligned}
$$

where on the right we have used $w_{c}(3) / 3 \geq \frac{2+\sqrt{2}}{3}$, based on the tetrahedron of width $2+\sqrt{2}$, and $w_{s}(404) / 404 \geq \frac{102}{101}$ from the 404-dimensional simplex.

Thank you for your attention!

Giulia Codenotti, Francisco Santos. Hollow polytopes of large width. Preprint, 17 pages, December 2018.
http://arxiv.org/abs/1812.00916

