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Embedded graphs and surfaces

In this talk, we care about conneected, compact, orientable surfaces, which
are classified by their genus (≈ number of holes).

=

Embedded graphs
A graph G is embedded on a surface S if it can be drawn without
crossings on S .

It is triangulated if all the faces have degree 3.
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Why should we care about embedded graphs ?

Two (among other) reasons to care about embedded graphs :

They appear in practice (road networks, computer graphics,
CAD...)

Every graph is embeddable on some surface.
→ Very fruitful point of view in graph theory, for example
crucial for graph minor theory .
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A geometric point of view

An embedded graph provides
a discrete metric to
measure the length of some
curves.

Discrete metric

We obtain a continuous
metric by embedding the
surface in R3 and measuring
the lengths there.

Continuous metric

Intrinsic point of view ⇒
Riemannian metric.

Goal of this talk: Highlight strong interactions between the study of
embedded graphs and continuous metrics on surfaces.
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Plan

1 Shortest curves : systoles and edge-width.

2 Homotopy height and a variant of planar graph searching.

3 Sweep-outs and branch decompositions.
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First part:
Shortest curves: systoles and edge-width
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Shortest non-contractible curves

Discrete setting Continuous setting

Upper bound on the length of the shortest non-contractible curve ?

Intuition

It should have length O(
√
A) or O(

√
n), but how does the O()

depend on g ?
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Discrete setting: topological graph theory

The edge-width of an embedded graph is the length of the
shortest non contractible cycle.

Theorem (Hutchinson ’88)

The edge-width of a triangulated graph with n triangles on a genus
g surface is O(

√
n/g log g).

Hutchinson conjectured that the correct bound is Θ(
√

n/g).
Disproved by Przytycka et Przytycki ’90-97 who obtained lower
bounds in Ω(

√
n/g

√
log g), and conjectured Θ(

√
n/g log g).

What about non-separating curves, or non-contractible but
homologically trivial?
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Systolic geometry

The systole of a Riemannian surface is the length of the shortest
noncontractible cycle.

Theorem (Gromov ’83, Katz and Sabourau ’04)

The systole of a Riemannian surface of genus g and area A is
O(

√
A/g log g).

Known variants for non-separating curves and homologically
trivial non-contractible [Sabourau ’08].
Buser and Sarnak ’94 used arithmetic surfaces to obtain a
matching lower bound: Ω(

√
A/g log g).

Larry Guth: “Arithmetic hyperbolic surfaces are remarkably
hard to picture.”
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From discrete to continuous

How to go from a discrete metric to a continuous one?

Proof.
Paste equilateral triangles of area 1 on the triangles.
Smooth the metric.

In the worst case, lengths double.

Theorem (Colin de Verdière, Hubard, de Mesmay ’14)

Let (S ,G ) be a triangulated surface of genus g, with n triangles.
There exists a Riemannian metric m on S with area n such that for
every closed curve γ in (S ,m) there exists a homotopic closed
curve γ′ on (S ,G ) with

|γ′|G ≤ (1 + δ)
4
√
3 |γ|m for some arbitrarily small δ.
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From discrete to continuous

How to go from a discrete metric to a continuous one?

Proof.
Paste equilateral triangles of area 1 on the triangles.
Smooth the metric.

In the worst case, lengths double.

Corollary

Let (S ,G ) be a triangulated surface of genus g with n triangles,
then there exists a non-contractible/non-separating cycle of length
O(

√
n/g log g).

Thus Gromov ⇒ Hutchinson and we obtain the other variants and
improved constants.
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From continuous to discrete

How do we switch from a continuous to a discrete metric ?

Proof.

Take a maximal set of balls of radius ε and perturb them a little.
⇒ Delaunay triangulation T

By [Dyer, Zhang and Möller ’08], the Delaunay graph is a
triangulation for ε small enough.

|γ|m ≤ 4ε|γ|G .

Each ball has radius πε2 + o(ε2), and thus ε = O(
√

A/n).
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Theorem and Corollaries

Theorem (Colin de Verdière, Hubard, de Mesmay ’14)

Let (S ,m) be a Riemannian surface of genus g and area A. There
exists a triangulated graph G embedded on S with n triangles, such
that every closed curve γ in (S ,G ) satisfies

|γ|m ≤ (1 + δ)
√

32
π

√
A/n |γ|G for some arbitrarily small δ.

This shows that Hutchinson ⇒ Gromov.
Proof of the conjecture of Przytycka and Przytycki:

Corollary

There exist arbitrarily large g and n such that the following holds:
There exists a triangulated combinatorial surface of genus g, with
n triangles, of edgewidth at least 1−δ

6

√
n/g log g for arbitrarily small δ.
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Second part:
Graph searching and homotopies
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A planar graph searching problem

Cops are holding hands and want to catch a fugitive on a
planar graph.
→ Authorized moves: sequence ofspikes and flips.

How many cops (= length of the curve) are needed?

Alternatively, can I slide a rubber band of fixed maximum
length around my wrist?

24 / 76



A planar graph searching problem

Cops are holding hands and want to catch a fugitive on a
planar graph.
→ Authorized moves: sequence ofspikes and flips.

How many cops (= length of the curve) are needed?

Alternatively, can I slide a rubber band of fixed maximum
length around my wrist?

25 / 76



A planar graph searching problem

Cops are holding hands and want to catch a fugitive on a
planar graph.
→ Authorized moves: sequence ofspikes and flips.

How many cops (= length of the curve) are needed?

Alternatively, can I slide a rubber band of fixed maximum
length around my wrist?

26 / 76



A planar graph searching problem

Cops are holding hands and want to catch a fugitive on a
planar graph.
→ Authorized moves: sequence ofspikes and flips.

How many cops (= length of the curve) are needed?

Alternatively, can I slide a rubber band of fixed maximum
length around my wrist?

27 / 76



A planar graph searching problem

Cops are holding hands and want to catch a fugitive on a
planar graph.
→ Authorized moves: sequence ofspikes and flips.

How many cops (= length of the curve) are needed?

Alternatively, can I slide a rubber band of fixed maximum
length around my wrist?

28 / 76



A planar graph searching problem

Cops are holding hands and want to catch a fugitive on a
planar graph.
→ Authorized moves: sequence ofspikes and flips.

How many cops (= length of the curve) are needed?

Alternatively, can I slide a rubber band of fixed maximum
length around my wrist?

29 / 76



A planar graph searching problem

Cops are holding hands and want to catch a fugitive on a
planar graph.
→ Authorized moves: sequence ofspikes and flips.

How many cops (= length of the curve) are needed?
Alternatively, can I slide a rubber band of fixed maximum
length around my wrist?

30 / 76



Homotopy height

A discrete homotopy is a sequence of cycles linked by spikes
or flips.

An optimal homotopy is a homotopy minimizing the
maximum length of intermediary curves (= the homotopy
height).

How can on compute an optimal homotopy?

Questions (E.Chambers-Letscher ’09)

Does there exist an optimal homotopy where intermediate
cycles do not self-intersect ? (isotopy)
Does there exists an optimal homotopy where pairs of
intermediate cycles do not intersect ? (monotonicity)
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Continuous frame?

Continuous homotopy : Continuous map h between two curves.

Theorem ([G. Chambers, Liokumovich ’14])

Let D be a Riemannian disk, with boundary γ. If there exists a
homotopy of height L of γ towards a point, there exists an isotopy
of height L + ε of γ twoards a point, for every ε > 0.

The proof works verbatim in the discrete case.
The ε comes from small perturbations which are not necessary
in the discrete case.

The very elegant proof analyzes a graph of resolutions of the
intermediate curves.
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Monotonicity?

Theorem ([G. Chambers, Rotman ’14])

Let D be a Riemannian disk, of boundary γ. If there exists a
homotopy of height L from γ towards a point, there exists a
monotone isotopy of height L + ε from γ towards a point, for every
ε > 0.
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Monotonicity?

Theorem ([G. Chambers, Rotman ’14][E. Chambers, G. Chambers,
de Mesmay, Ophelders, Rotman ’18])
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Algorithmic applications

Theorem ([E. Chambers, de Mesmay,
Ophelders ’18])

Testing whether a disk has homotopy height
at most k is in NP.

Lemma
There exists h an optimal monotone contraction of
a cycle γ towards a point p, such that each
intermediate curve h(t) cuts the shortest path
between γ and p exactly once.

Theorem ([E. Chambers, de Mesmay, Ophelders ’18])

We can compute in polynomial time an O(log n) approximation of
homotopy height.
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Third part:
Geodesics, sweep-outs and graph decompositions
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Geodesics

On a sphere, there is no systole . . .
... but there are geodesics, i.e., curves that are locally the
shortest.

Theorem (Rotman ’06)

The shortest closed geodesic on a Riemannian sphere of area A has
length 4

√
2
√
A.

Quiz: what object on planar graphs has length at most
2
√
2
√
n ?
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Planar separators

Theorem (Lipton-Tarjan ’79, Alon-Seymour-Thomas ’94)

Let G be a triangulated graph with n vertices, then there exists a
cycle with at most 2

√
2
√
n vertices such the the inside and the

outside of the cycle contain each at most 2n/3 vertices.

The “same” object is hidden behind planar separators and
geodesics.

50 / 76



Planar separators

Theorem (Lipton-Tarjan ’79, Alon-Seymour-Thomas ’94)

Let G be a triangulated graph with n vertices, then there exists a
cycle with at most 2

√
2
√
n vertices such the the inside and the

outside of the cycle contain each at most 2n/3 vertices.

The “same” object is hidden behind planar separators and
geodesics.

51 / 76



Finding geodesics

How to find a geodesic ? ([Birkhoff ’17])
1 Linearly sweep the sphere with curves.
2 Tighten all the curves.
3 Look at the “middle” one.

The length of the shortest geodesic is upper bounded by the waist
of the best sweep-out:

waist(S) = inf
f :S→[0,1]

sup
t∈[0,1]

||f −1(t)||
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Finding geodesics 2

How to find a geodesic ? ([Calabi-Cao ’92]) (sketchy)

1 Sweep the sphere in a tree-like fashion with curves.
2 Tighten all the curves.
3 Look at what remains.

The length of the shortest geodesics is upper bounded by twice the
waist of the best tree-like sweep-out:

branchwaist(S) = inf
f :S→T ,t∈T

sup
t∈E(T )

||f −1(t)||
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From planar separators to branch-decompositions

Replace the graph by its radial graph.
Find separators recursively on both sides.
This induces a branch decomposition of the graph.

The length of the shortest planar separator is upper bounded by the
branchwidth of the radial graph:

branchwidth(S) = inf
T∈T

sup
e∈E(T )

|V (C (e))|
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From planar separators to branch-decompositions

Replace the graph by its radial graph.
Find separators recursively on both sides.
This induces a branch decomposition of the graph.

ab be

bc

cf

ef

fi
hieh

gh

dg

de

ad
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Harvesting the fruits of this analogy

A strong analogy between tree-like sweep-outs of spheres
and branch decompositions of planar graphs . . .

. . . than we can exploit.

Theorem (Alon-Seymour-Thomas ’94, Fomin-Thilikos ’06)

Let G be a planar graph with n vertices, then
There exists a cycle with at most 3/2

√
2
√
n vertices such that

the inside and the outside of the cycle contain each at most
2n/3 vertices,
G has branchwidth at most 3/2

√
2
√
n.
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Improved bounds to sweep spheres

Theorem (Hubard, de Mesmay, Lazarus [’19?])

Let S be a Riemannian sphere of area A.
The branchwaist of S satisfies :

branchwaist(S) := inf
f :S→T ,T∈T

sup
t∈E(T )

||f −1(t)|| ≤
√
2π
√
A

There exists a closed geodesic of length at most 2
√
2πA.

For comparison:
On the usual round sphere, A = 4π, |γ| = 2π and thus
|γ| =

√
πA.

It is conjectured that the sphere with the longest shortest
geodesic is obtained by pasting two equilateral triangles.
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The ratcatcher

Branchwidth of planar graphs can be computed in polynomial
time.

Theorem (Seymour-Thomas ’94, relying on Graph Minors XI)

Let G be a planar graph, G has branchwidth at least k if and only
if there exists an antipodality of range k.
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Branchwidth of planar graphs can be computed in polynomial
time.

Theorem (Seymour-Thomas ’94, relying on Graph Minors XI)

Let G be a planar graph, G has branchwidth at least k if and only
if there exists an antipodality of range k.

Let G be a planar graph, an antipodality of range k is a map α
sending,

each edge e ∈ E (G ) to a subgraph α(e) in G ,
each face f ∈ F (G ) to a subset α(f ) of V (G ),

such that
1 For e ∈ E (G ), no endpoint of e belongs to V (α(e)),
2 If e ∈ E (G ), f ∈ F (G ) and e is incident to f , then
α(f ) ⊆ V (α(e)) and each component of α(e) has a vertex in
α(f ),

3 If e ∈ E (G ), f ∈ E (α(e)) then each walk of G ∗ using e∗ and
f ∗ has length at least k .
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The ratcatcher

Branchwidth of planar graphs can be computed in polynomial
time.

Theorem (Seymour-Thomas ’94, relying on Graph Minors XI)

Let G be a planar graph, G has branchwidth at least k if and only
if there exists an antipodality of range k.

An antipodality of size k is a strategy allowing a rat to escape a
ratcatcher having arms of length k .
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Continuous version

A (continuous) antipodality of range k is a continuous mapping
a : S → S such that x ∈ S ,

d(x , a(x)) ≥ k/2.

Theorem (Hubard, de Mesmay, Lazarus ’19?)

Let S be a Riemannian sphere, then S has branchwaist at least k if
and only if there exists an antipodality of range at least k − ε for any

ε > 0, i.e.,

inf
f :S→T ,t∈T

sup
t∈E(T )

||f −1(t)|| = sup
f :S→S

inf
x∈S

2d(x , a(x))

Related to results of Berger (1980) and Gromov (1983).
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A few perspectives

Natural discretizations of arithmetic surfaces ?

Animation by Greg Egan
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A few perspectives II

Geometric interperpretation for the treewidth of planar
graphs?
Geometric interpretation of the branchwidth of
surface-embedded graphs?
⇒ Polynomial-time algorithms?
More precise connections with Finsler geometry?

6=

Thank you for your attention!
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