Bridges between embedded graphs and the
geometry of surfaces

Arnaud de Mesmay
CNRS, Gipsa-lab, Université Grenoble Alpes

Based on joint works with E. Chambers, G. Chambers, E. Colin de
Verdiére, A. Hubard, F. Lazarus, T. Ophelders and R. Rotman.
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Embedded graphs and surfaces

|n th|$ talk, we care about conneected, compact, orientable Surfaces, Wh|Ch
are classified by their genus (~ number of holes).

Embedded graphs

A graph G is embedded on a surface S if it can be drawn without
crossings on S.

It is triangulated if all the faces have degree 3.
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Why should we care about embedded graphs 7

Two (among other) reasons to care about embedded graphs :

@ They appear in practice (road networks, computer graphics,
CAD...)
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@ Every graph is embeddable on some surface.
— Very fruitful point of view in graph theory, for example
crucial for graph minor theory.
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A geometric point of view

@ An embedded graph provides o We obtain a continuous
a discrete metric to metric by embedding the
measure the length of some surface in R3 and measuring
curves. the lengths there.

Discrete metric

Continuous metric

Intrinsic point of view =
Riemannian metric.

Goal of this talk: Highlight strong interactions between the study of

embedded graphs and continuous metrics on surfaces. .



Plan

© Shortest curves : systoles and edge-width.
A e e ‘ ?amw..% N
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@ Homotopy height and a variant of planar graph searching.

© Sweep-outs and branch decompositions.
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First part:
Shortest curves: systoles and edge-width
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Shortest non-contractible curves

Discrete setting Continuous setting

Upper bound on the length of the shortest non-contractible curve 7
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Shortest non-contractible curves

Discrete setting Continuous setting

Upper bound on the length of the shortest non-contractible curve 7

~/

It should have length O(\/A) or O(y/n), but how does the O()
depend on g 7

10/76



Discrete setting: topological graph theory

The edge-width of an embedded graph is the length of the
shortest non contractible cycle.

Theorem (Hutchinson '88)

The edge-width of a triangulated graph with n triangles on a genus
g surface is O(\/n/glogg).

@ Hutchinson conjectured that the correct bound is ©(\/n/g).
@ Disproved by Przytycka et Przytycki '90-97 who obtained lower

bounds in Q(\/n/g+/log g), and conjectured ©(\/n/glog g).

@ What about non-separating curves, or non-contractible but
homologically trivial?
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Systolic geometry

The systole of a Riemannian surface is the length of the shortest

noncontractible cycle.

Theorem (Gromov '83, Katz and Sabourau '04)

The systole of a Riemannian surface of genus g and area A is

O(\/A/glogg).

@ Known variants for non-separating curves and homologically
trivial non-contractible [Sabourau '08].
@ Buser and Sarnak '94 used arithmetic surfaces to obtain a

matching lower bound: Q(\/A/glogg).
e Larry Guth: “Arithmetic hyperbolic surfaces are remarkably

hard to picture.”
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From discrete to continuous

How to go from a discrete metric to a continuous one?

Proof.

@ Paste equilateral triangles of area 1 on the triangles.

@ Smooth the metric.

>

@ In the worst case, lengths double.

A\

Theorem (Colin de Verdiére, Hubard, de Mesmay '14)

Let (S, G) be a triangulated surface of genus g, with n triangles.
There exists a Riemannian metric m on S with area n such that for
every closed curve ~ in (S, m) there exists a homotopic closed
curve v on (S, G) with

c<(1+48)V3

24

Yim for some arbitrarily small 5.
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From discrete to continuous

How to go from a discrete metric to a continuous one?

Proof.
@ Paste equilateral triangles of area 1 on the triangles.

@ Smooth the metric.

750 > N

@ In the worst case, lengths double. 0

N,

Corollary

Let (S, G) be a triangulated surface of genus g with n triangles,
then there exists a non-contractible/non-separating cycle of length

O(v/n/glogg).

Thus Gromov = Hutchinson and we obtain the other variants and
improved constants.

\
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From continuous to discrete

How do we switch from a continuous to a discrete metric ?
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From continuous to discrete

How do we switch from a continuous to a discrete metric ?

Take a maximal set of balls of radius ¢ and perturb them a little.
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From continuous to discrete

How do we switch from a continuous to a discrete metric ?

Take a maximal set of balls of radius ¢ and perturb them a little.
= Delaunay triangulation T

By [Dyer, Zhang and Mdller '08], the Delaunay graph is a

triangulation for & small enough.

Vm < 4elvl6-

Each ball has radius 72 + o(¢?), and thus ¢ = O(y/A/n).
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Theorem and Corollaries

Theorem (Colin de Verdiére, Hubard, de Mesmay '14)

Let (S, m) be a Riemannian surface of genus g and area A. There
exists a triangulated graph G embedded on S with n triangles, such
that every closed curve ~ in (S, G) satisfies

‘A}/ | m = 1 + (S \ / 32 m "y| @ for some arbitrarily small 5.

@ This shows that Hutchinson = Gromov.

@ Proof of the conjecture of Przytycka and Przytycki:

There exist arbitrarily large g and n such that the following holds:
There exists a triangulated combinatorial surface of genus g, with

n triangles, of edgewidth at least 1%5 \/n/glogg  for arbitrarity smail 5.
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Second part:
Graph searching and homotopies
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A planar graph searching problem

@ Cops are holding hands and want to catch a fugitive on a
planar graph.
— Authorized moves: sequence ofspikes and flips.

e el

@ How many cops (= length of the curve) are needed?
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A planar graph searching problem

@ Cops are holding hands and want to catch a fugitive on a
planar graph.
— Authorized moves: sequence ofspikes and flips.

= DD
@ How many cops (= length of the curve) are needed?

o Alternatively, can | slide a rubber band of fixed maximum
length around my wrist?
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Homotopy height

o A discrete homotopy is a sequence of cycles linked by spikes

or flips. . NS

@ An optimal homotopy is a homotopy minimizing the

maximum length of intermediary curves (= the homotopy
height).
How can on compute an optimal homotopy?

Questions (E.Chambers-Letscher '09)

@ Does there exist an optimal homotopy where intermediate
cycles do not self-intersect ? (isotopy)

@ Does there exists an optimal homotopy where pairs of
intermediate cycles do not intersect 7 (monotonicity)

>@
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Continuous frame?

Continuous homotopy: Continuous map h between two curves.

O

Theorem ([G. Chambers, Liokumovich '14])

Let D be a Riemannian disk, with boundary ~. If there exists a
homotopy of height L of ~ towards a point, there exists an isotopy
of height L + ¢ of ~ twoards a point, for every = > o.

@ The proof works verbatim in the discrete case.
@ The & comes from small perturbations which are not necessary
in the discrete case.
The very elegant proof analyzes a graph of resolutions of the
intermediate curves.

R AR &
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Monotonicity?

Theorem ([G. Chambers, Rotman '14])

Let D be a Riemannian disk, of boundary . If there exists a
homotopy of height L from ~ towards a point, there exists a

monotone isotopy of height L + ¢ from ~ towards a point, for every
e >0.
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Monotonicity?

Theorem ({c—ChambersRetman—14])

Let D be a Riemannian disk, of boundary . If there exists a
homotopy of height L from ~ towards a point, there exists a

monotone isotopy of height L + ¢ from ~ towards a point, for every
e >0.
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Monotonicity?

Theorem ({G—Chambers—Rotman—14}[E. Chambers, G. Chambers,

de Mesmay, Ophelders, Rotman '18])

Let D be a Riemannian disk, of boundary ~. If there exists a
homotopy of height L from ~ towards a point, there exists a

monotone isotopy of height L + ¢ from ~y towards a point, for every
e >0.
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Monotonicity?

Theorem ({G—Chambers—Rotman—14}[E. Chambers, G. Chambers,

de Mesmay, Ophelders, Rotman '18])

Let D be a Riemannian disk, of boundary ~y. If there exists a
homotopy of height L from ~ towards a point, there exists a

monotone isotopy of height L + ¢ from ~y towards a point, for every
e>0.

Y2 VYn_q

VAT

Y1 Y3
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Algorithmic applications

Theorem ([E. Chambers, de Mesmay,

Ophelders '18])

Testing whether a disk has homotopy height
at most k is in NP.

There exists h an optimal monotone contraction of
a cycle v towards a point p, such that each
intermediate curve h(t) cuts the shortest path
between ~ and p exactly once.

Theorem ([E. Chambers, de Mesmay, Ophelders '18])

We can compute in polynomial time an O(log n) approximation of
homotopy height.
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Third part:
Geodesics, sweep-outs and graph decompositions
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Geodesics

@ On a sphere, there is no systole . ..

@ ... but there are geodesics, i.e., curves that are locally the
shortest.
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Geodesics

@ On a sphere, there is no systole . ..
@ ... but there are geodesics, i.e., curves that are locally the
shortest.

Theorem (Rotman '06)

The shortest closed geodesic on a Riemannian sphere of area A has

length 4/2\/A.

@ Quiz: what object on planar graphs has length at most
2v2,/n?
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Geodesics

@ On a sphere, there is no systole . ..
@ ... but there are geodesics, i.e., curves that are locally the
shortest.

el AN

Theorem (Rotman '06)

The shortest closed geodesic on a Riemannian sphere of area A has

length 4+/2+/A.

@ Quiz: what object on planar graphs has length at most
2v2,/n?
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Planar separators

Theorem (Lipton-Tarjan '79, Alon-Seymour-Thomas '94)

Let G be a triangulated graph with n vertices, then there exists a
cycle with at most 2+/2./n vertices such the the inside and the
outside of the cycle contain each at most 2n/3 vertices.

@ The “same” object is hidden behind planar separators and

geodesics.

I s I I ? I
—o 4
o W
—o 4
o S
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Planar separators

Theorem (Lipton-Tarjan '79, Alon-Seymour-Thomas '94)

Let G be a triangulated graph with n vertices, then there exists a
cycle with at most 2+/2./n vertices such the the inside and the
outside of the cycle contain each at most 2n/3 vertices.

: P S
@ The “same” object is hidden behind planar separators and

geodesics.
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Finding geodesics

How to find a geodesic ? (

© Linearly sweep the sphere with curves.
@ Tighten all the curves.
© Look at the “middle” one.

‘41‘ ‘p‘

The length of the shortest geodesic is upper bounded by the waist
of the best sweep-out:
waist(S) = inf  sup [|[F7L(t)]

£:5-[0,1] ¢e[0,1]
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Finding geodesics

How to find a geodesic ? (

© Linearly sweep the sphere with curves.
@ Tighten all the curves.
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Finding geodesics 2

How to find a geodesic ? ( ) (sketchy)

© Sweep the sphere in a tree-like fashion with curves.
@ Tighten all the curves.

© Look at what remains.

3
o

=
Iz

The length of the shortest geodesics is upper bounded by twice the
waist of the best tree-like sweep-out:

branchwaist(S) = f'S%ir]/ftET SE(PT) £ (o)l
ST teT ¢
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@ Tighten all the curves.

© Look at what remains.

The length of the shortest geodesics is upper bounded by twice the
waist of the best tree-like sweep-out:
branchwaist(S) = inf sup ||F ()]

f:S—>T,teT teE(T)
58 /76



Finding geodesics 2

How to find a geodesic ? ( ) (sketchy)

© Sweep the sphere in a tree-like fashion with curves.
@ Tighten all the curves.

© Look at what remains.

The length of the shortest geodesics is upper bounded by twice the
waist of the best tree-like sweep-out:
branchwaist(S) = inf sup ||F (1)

f:S—T,teT teE(T)
59 /76



From planar separators to branch-decompositions

@ Replace the graph by its radial graph.
@ Find separators recursively on both sides.
@ This induces a branch decomposition of the graph.

The length of the shortest planar separator is upper bounded by the

branchwidth of the radial graph:

branchwidth(S) = inf sup |V(C(e))]
TET ecE(T)
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TeT ecE(T)

64 /76



From planar separators to branch-decompositions

@ Replace the graph by its radial graph.
@ Find separators recursively on both sides.
@ This induces a branch decomposition of the graph.

The length of the shortest planar separator is upper bounded by the
branchwidth of the radial graph:

branchwidth(S) = sup |V(C(e))|

inf
TeT ecE(T)

65/76



From planar separators to branch-decompositions

@ Replace the graph by its radial graph.
@ Find separators recursively on both sides.
@ This induces a branch decomposition of the graph.

The length of the shortest planar separator is upper bounded by the
branchwidth of the radial graph:

branchwidth(S) = sup |V(C(e))

inf
TET ecE(T)
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Harvesting the fruits of this analogy

@ A strong analogy between tree-like sweep-outs of spheres
and branch decompositions of planar graphs . ..
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Harvesting the fruits of this analogy

@ A strong analogy between tree-like sweep-outs of spheres
and branch decompositions of planar graphs . ..

@ ... than we can exploit.

Theorem (Alon-Seymour-Thomas '94, Fomin-Thilikos '06)

Let G be a planar graph with n vertices, then
o There exists a cycle with at most 3/2+/2./n vertices such that
the inside and the outside of the cycle contain each at most
2n/3 vertices,
o G has branchwidth at most 3/2+/2+/n. )
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Improved bounds to sweep spheres

Theorem (Hubard, de Mesmay, Lazarus ['197])

Let S be a Riemannian sphere of area A.

@ The branchwaist of S satisfies :

branchwaist(S) := e ir}fT - Sup IIF~L(b)|| < V2rVA
D=L TE] +eE(T)

@ There exists a closed geodesic of length at most 2+/2mwA.

For comparison:
@ On the usual round sphere, A = 4,

vl = VTA.

@ It is conjectured that the sphere with the longest shortest
geodesic is obtained by pasting two equilateral triangles.

~| = 27 and thus
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The ratcatcher

Branchwidth of planar graphs can be computed in polynomial
time.

Theorem (Seymour-Thomas '94, relying on Graph Minors XI)

Let G be a planar graph, G has branchwidth at least k if and only
if there exists an antipodality of range k.
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The ratcatcher

Branchwidth of planar graphs can be computed in polynomial
time.

Theorem (Seymour-Thomas '94, relying on Graph Minors XI)

Let G be a planar graph, G has branchwidth at least k if and only
if there exists an antipodality of range k.

Let G be a planar graph, an antipodality of range k is a map «
sending,
@ each edge e € E(G) to a subgraph a(e) in G,
@ each face f € F(G) to a subset a(f) of V(G),
such that
@ For e € E(G), no endpoint of e belongs to V(«(e)),
@ Ifec E(G),f € F(G) and e is incident to f, then
a(f) € V(a(e)) and each component of «(e) has a vertex in
a(f),
@ Ifec E(G),f € E(a(e)) then each walk of G* using e* and
f* has length at least k.
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The ratcatcher

Branchwidth of planar graphs can be computed in polynomial
time.

Theorem (Seymour-Thomas '94, relying on Graph Minors XI)

Let G be a planar graph, G has branchwidth at least k if and only
if there exists an antipodality of range k.

An antipodality of size k is a strategy allowing a rat to escape a
ratcatcher having arms of length k.
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Continuous version

A (continuous) antipodality of range k is a continuous mapping
a:S — Ssuchthat x € S,

d(x, a(x)) > k/2.

Theorem (Hubard, de Mesmay, Lazarus '197)

Let S be a Riemannian sphere, then S has branchwaist at least k if
and only if there exists an antipodality of range at least k — & for any

>0, i.e.,

inf sup |[F7X(t)|| = sup inf 2d(x, a(x
f:S%T,tETtGE(T)H ( )H f:S_3yS XES ( ( ))

Related to results of Berger (1980) and Gromov (1983).
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A few perspectives

o Natural discretizations of arithmetic surfaces ?

Animation by Greg Egan
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A few perspectives |l

@ Geometric interperpretation for the treewidth of planar
graphs?

@ Geometric interpretation of the branchwidth of
surface-embedded graphs?
= Polynomial-time algorithms?

@ More precise connections with Finsler geometry?
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A few perspectives |l

@ Geometric interperpretation for the treewidth of planar
graphs?

@ Geometric interpretation of the branchwidth of
surface-embedded graphs?
= Polynomial-time algorithms?

@ More precise connections with Finsler geometry?

Thank you for your attention!
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