GAC Summer School
 Paris - June 19, 2019

The minimal cellular resolution of the edge ideals of forests

Antonio Macchia
Freie Universität Berlin

joint work with Margherita Barile (Università degli Studi di Bari)

1.1. Minimal free resolutions

Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ and $I \subset S$ be a monomial ideal. A minimal graded free resolution of S / I encodes all information about I.

1.1. Minimal free resolutions

Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ and $I \subset S$ be a monomial ideal. A minimal graded free resolution of S / I encodes all information about I. A minimal graded free resolution of S / I is an exact sequence $\left(\operatorname{Ker}\left(\varphi_{i}\right)=\right.$ $\left.\operatorname{Im}\left(\varphi_{i+1}\right)\right)$ of S-modules

$$
\mathrm{O} \longrightarrow F_{h} \xrightarrow{\varphi_{h}} \cdots \xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} F_{0} \xrightarrow{\varphi_{0}} S / I \longrightarrow 0,
$$

where $F_{i}=\bigoplus_{j} S(-j)^{\beta_{i j}(S / I)} \neq 0$ and $\operatorname{Im}\left(\varphi_{i}\right) \subset\left(x_{1}, \ldots, x_{n}\right) F_{i-1}$.

1.1. Minimal free resolutions

Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ and $I \subset S$ be a monomial ideal. A minimal graded free resolution of S / I encodes all information about I.
A minimal graded free resolution of S / I is an exact sequence $\left(\operatorname{Ker}\left(\varphi_{i}\right)=\right.$ $\operatorname{Im}\left(\varphi_{i+1}\right)$) of S-modules

$$
\mathrm{O} \longrightarrow F_{h} \xrightarrow{\varphi_{h}} \cdots \xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} F_{0} \xrightarrow{\varphi_{0}} S / I \longrightarrow 0,
$$

where $F_{i}=\bigoplus_{j} S(-j)^{\beta_{i j}(S / I)} \neq 0$ and $\operatorname{Im}\left(\varphi_{i}\right) \subset\left(x_{1}, \ldots, x_{n}\right) F_{i-1}$.

- $\beta_{i j}(S / I) \rightarrow$ graded Betti numbers of S / I
- $\beta_{i}(S / I)=\sum_{j} \beta_{i j}(S / I)=\operatorname{rank}\left(F_{i}\right) \rightarrow$ total Betti numbers of S / I
- $\operatorname{pd}(S / I)=h \rightarrow$ projective dimension of S / I

1.1. Minimal free resolutions

Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ and $I \subset S$ be a monomial ideal. A minimal graded free resolution of S / I encodes all information about I.
A minimal graded free resolution of S / I is an exact sequence $\left(\operatorname{Ker}\left(\varphi_{i}\right)=\right.$ $\operatorname{Im}\left(\varphi_{i+1}\right)$) of S-modules

$$
0 \longrightarrow F_{h} \xrightarrow{\varphi_{h}} \cdots \xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} F_{0} \xrightarrow{\varphi_{0}} S / I \longrightarrow 0,
$$

where $F_{i}=\bigoplus_{j} S(-j)^{\beta_{i j}(S / I)} \neq 0$ and $\operatorname{Im}\left(\varphi_{i}\right) \subset\left(x_{1}, \ldots, x_{n}\right) F_{i-1}$.

- $\beta_{i j}(S / I) \rightarrow$ graded Betti numbers of S / I
- $\beta_{i}(S / I)=\sum_{j} \beta_{i j}(S / I)=\operatorname{rank}\left(F_{i}\right) \rightarrow$ total Betti numbers of S / I
- $\operatorname{pd}(S / I)=h \rightarrow$ projective dimension of S / I

Problem

- Find classes of ideals whose minimal resolutions can be easily described.
- Describe non-minimal resolutions for large classes of monomial ideals.

Example Let $I=\left(x^{4}, y^{4}, z^{4}, x^{3} y^{2} z, x y^{3} z^{2}, x^{2} y z^{3}\right) \subset S=k[x, y, z]$.
We can draw a 3 -dimensional staircase diagram to represent I.
Then we draw a graph in which we connect two minimal generators of I when they "look adjacent". We label each edge and each triangular face according to the exponent vector of the Icm of its vertices.

The minimal free resolution of I can be read off this figure:

$$
0 \longrightarrow S^{7} \longrightarrow S^{12} \longrightarrow S^{6} \longrightarrow I \longrightarrow 0
$$

where the exponents correspond to 6 vertices, 12 edges and 7 triangles.

1.2. Simplicial resolutions

Simplicial resolutions were introduced by [Bayer, Peeva, Sturmfels, 1998].

Let Δ be a simplicial complex whose vertices are labeled by the minimal generators of a monomial ideal $I \subset S$. Each face F of Δ is labeled by the least common multiple of its vertices, denoted by $\mathbf{m}_{F}=\mathbf{x}^{\mathbf{a}^{F}}$.

1.2. Simplicial resolutions

Simplicial resolutions were introduced by [Bayer, Peeva, Sturmfels, 1998].

Let Δ be a simplicial complex whose vertices are labeled by the minimal generators of a monomial ideal $I \subset S$. Each face F of Δ is labeled by the least common multiple of its vertices, denoted by $\mathbf{m}_{F}=\mathbf{x}^{\mathbf{a} F}$.

Let \mathcal{F}_{Δ} be the reduced chain complex of Δ over S defined by

$$
\mathcal{F}_{\Delta}=\bigoplus_{F \in \Delta} S\left(-\mathbf{a}_{F}\right), \quad \varphi(F)=\sum_{G \text { facet of } F} \operatorname{sign}(G, F) \mathbf{x}^{\mathbf{a}_{F}-\mathbf{a}_{G}} G,
$$

where F, G are thought of both as faces of Δ and as basis vectors in degrees \mathbf{a}_{F} and \mathbf{a}_{G}. Moreover, $\operatorname{sign}(G, F)$ equals $+\mathbf{1}$ if F^{\prime} s orientation induces G^{\prime} 's orientation and -1 otherwise.

Proposition (BPS, 1998) The complex \mathcal{F}_{Δ} is exact and defines a free resolution of I if and only if for every monomial \mathbf{m}, the complex

$$
\Delta_{\preceq \mathbf{m}}=\left\{F \in \Delta: \mathbf{m}_{F} \text { divides } \mathbf{m}\right\}
$$

is empty or acyclic over k (i.e., it has zero reduced homology). In this case, we call \mathcal{F}_{Δ} a simplicial resolution of I supported by Δ.

Proposition (BPS, 1998) The complex \mathcal{F}_{Δ} is exact and defines a free resolution of I if and only if for every monomial \mathbf{m}, the complex

$$
\Delta_{\preceq \mathbf{m}}=\left\{F \in \Delta: \mathbf{m}_{F} \text { divides } \mathbf{m}\right\}
$$

is empty or acyclic over k (i.e., it has zero reduced homology). In this case, we call \mathcal{F}_{Δ} a simplicial resolution of I supported by Δ.

Example Let $I=\left(x^{2} y, x z, y z^{2}, y^{2}\right) \subset S=k[x, y, z]$ and consider the simplicial complexes X and Y on the generators of I :

X supports the free resolution $\mathcal{F}_{X}: 0 \rightarrow S^{2} \rightarrow S^{5} \rightarrow S^{4} \rightarrow I \rightarrow 0$.

Proposition (BPS, 1998) The complex \mathcal{F}_{Δ} is exact and defines a free resolution of I if and only if for every monomial \mathbf{m}, the complex

$$
\Delta_{\preceq \mathbf{m}}=\left\{F \in \Delta: \mathbf{m}_{F} \text { divides } \mathbf{m}\right\}
$$

is empty or acyclic over k (i.e., it has zero reduced homology). In this case, we call \mathcal{F}_{Δ} a simplicial resolution of I supported by Δ.

Example Let $I=\left(x^{2} y, x z, y z^{2}, y^{2}\right) \subset S=k[x, y, z]$ and consider the simplicial complexes X and Y on the generators of I :

X supports the free resolution $\mathcal{F}_{X}: 0 \rightarrow S^{2} \rightarrow S^{5} \rightarrow S^{4} \rightarrow I \rightarrow 0$. Y does not support a free resolution of $I: Y_{\underline{x y^{2} z}}$ consists of the two vertices $x z$ and y^{2}, hence it is not acyclic.

1.3. Minimality

Proposition (BPS, 1998) Let \mathcal{F}_{Δ} be a free resolution of the monomial ideal I supported by the labeled simplicial complex Δ. Then \mathcal{F}_{Δ} is a minimal free resolution if and only if any two comparable faces $G \subset F$ of Δ have distinct degrees, i.e. $\mathbf{m}_{G} \neq \mathbf{m}_{F}$.

1.з. Minimality

Proposition (BPS, 1998) Let \mathcal{F}_{Δ} be a free resolution of the monomial ideal I supported by the labeled simplicial complex Δ. Then \mathcal{F}_{Δ} is a minimal free resolution if and only if any two comparable faces $G \subset F$ of Δ have distinct degrees, i.e. $\mathbf{m}_{G} \neq \mathbf{m}_{F}$.

Example Let $I=\left(x^{2}, x y, y^{3}\right) \subset S=k[x, y]$ and consider the simplicial complexes X and Y on the generators of I :

Both X and Y support a free resolution of I :

$$
\mathcal{F}_{X}: 0 \rightarrow S \rightarrow S^{3} \rightarrow S^{3} \rightarrow I \rightarrow 0 \quad \mathcal{F}_{Y}: 0 \rightarrow S^{2} \rightarrow S^{3} \rightarrow I \rightarrow 0
$$

\mathcal{F}_{Y} is minimal; \mathcal{F}_{X} is not minimal: the triangle and one of its edges have the same label $x^{2} y^{3}$.

1.4. The Taylor resolution (1966)

If I is a monomial ideal with r minimal generators, let Δ be the full ($r-$ 1)-dimensional simplex whose r vertices are labeled by the generators $\mathbf{m}_{1}, \ldots, \mathbf{m}_{s}$.

1.4. The Taylor resolution (1966)

If I is a monomial ideal with r minimal generators, let Δ be the full ($r-$ 1)-dimensional simplex whose r vertices are labeled by the generators $\mathbf{m}_{1}, \ldots, \mathbf{m}_{s}$.
For any monomial \mathbf{m}, the subcomplex $\Delta_{\preceq \mathbf{m}}$ is a face of Δ, i.e., the full simplex on all monomials \mathbf{m}_{i} dividing \mathbf{m}.

In particular, $\Delta_{\underline{\mathbf{m}}}$ is contractible, hence acyclic. Thus \mathcal{F}_{Δ} is a simplicial resolution of I called Taylor resolution.

1.4. The Taylor resolution (1966)

If I is a monomial ideal with r minimal generators, let Δ be the full ($r-$ 1)-dimensional simplex whose r vertices are labeled by the generators $\mathbf{m}_{1}, \ldots, \mathbf{m}_{s}$.
For any monomial \mathbf{m}, the subcomplex $\Delta_{\preceq \mathbf{m}}$ is a face of Δ, i.e., the full simplex on all monomials \mathbf{m}_{i} dividing \mathbf{m}.

In particular, $\Delta_{\preceq \mathbf{m}}$ is contractible, hence acyclic. Thus \mathcal{F}_{Δ} is a simplicial resolution of I called Taylor resolution.

Example Let $I=\left(x^{2}, x y, y^{3}\right) \subset S=k[x, y]$. The Taylor resolution of I is

The Taylor resolution is often not minimal.

1.5. Make a cellular resolution minimal

Using Discrete Morse Theory, one can hope to prune a cellular resolution to get a minimal one. Algorithms by

- Àlvarez Montaner, Fernández-Ramos, Gimenez (2017)
- Torrente, Varbaro (2018)

1.5. Make a cellular resolution minimal

Using Discrete Morse Theory, one can hope to prune a cellular resolution to get a minimal one. Algorithms by

- Àlvarez Montaner, Fernández-Ramos, Gimenez (2017)
- Torrente, Varbaro (2018)

Bad news: Velasco (2008) constructed monomial ideals whose minimal free resolution is not supported by any CW-complex.

1.5. Make a cellular resolution minimal

Using Discrete Morse Theory, one can hope to prune a cellular resolution to get a minimal one. Algorithms by

- Àlvarez Montaner, Fernández-Ramos, Gimenez (2017)
- Torrente, Varbaro (2018)

Bad news: Velasco (2008) constructed monomial ideals whose minimal free resolution is not supported by any CW-complex.

Minimal cellular resolutions have been found for

- generic and shellable monomial modules [Batzies, Welker, 2002],
- the powers of the edge ideals of paths [Engström, Norén, 2012],
- the Eliahou-Kervaire resolution for stable ideals [Mermin, 2010],
- the matroid ideal of a finite projective space [Novik, 2002].

2.1. Edge ideals of trees

Definition Let G be a graph on the vertex set $[n]$ and $S=k\left[x_{1}, \ldots, x_{n}\right]$. The edge ideal of G is the squarefree monomial ideal

$$
I(G)=\left(x_{i} x_{j}:\{i, j\} \in E(G)\right) \subset S .
$$

2.1. Edge ideals of trees

Definition Let G be a graph on the vertex set $[n]$ and $S=k\left[x_{1}, \ldots, x_{n}\right]$. The edge ideal of G is the squarefree monomial ideal

$$
I(G)=\left(x_{i} x_{j}:\{i, j\} \in E(G)\right) \subset S .
$$

Here we consider trees that are connected graphs without cycles.
Example Let T be the following tree:

$$
I(T)=\binom{x_{1} x_{2}, x_{1} x_{4}, x_{2} x_{3},}{x_{4} x_{5}, x_{4} x_{6}, x_{6} x_{7}} \subset k\left[x_{1}, \ldots, x_{7}\right]
$$

2.2. The algorithm

Fix a vertex $x_{1}^{(0)}$ of T and call $x_{1}^{(i)}, \ldots, x_{s_{i}}^{(i)}$ the vertices lying at distance i from $x_{1}^{(0)}$. Consider the lexicographic order induced by $x_{1}^{(0)}>x_{1}^{(1)}>\cdots>x_{s_{1}}^{(1)}>\cdots>x_{1}^{(d)}>\cdots>x_{s_{d}}^{(d)}$.

2.2. The algorithm

Fix a vertex $x_{1}^{(0)}$ of T and call $x_{1}^{(i)}, \ldots, x_{s_{i}}^{(i)}$ the vertices lying at distance i from $x_{1}^{(0)}$. Consider the lexicographic order induced by $x_{1}^{(0)}>x_{1}^{(1)}>\cdots>x_{s_{1}}^{(1)}>\cdots>x_{1}^{(d)}>\cdots>x_{s_{d}}^{(d)}$.

(1) Select a descending sequence of variables $x_{p_{1}}^{\left(i_{1}\right)}, \ldots, x_{p_{t}}^{\left(i_{t}\right)}$ corresponding to pairwise non-adjacent vertices of T.

$$
x_{1}^{(1)}, x_{2}^{(1)}
$$

2.2. The algorithm

Fix a vertex $x_{1}^{(0)}$ of T and call $x_{1}^{(i)}, \ldots, x_{s_{i}}^{(i)}$ the vertices lying at distance i from $x_{1}^{(0)}$. Consider the lexicographic order induced by $x_{1}^{(0)}>x_{1}^{(1)}>\cdots>x_{s_{1}}^{(1)}>\cdots>x_{1}^{(d)}>\cdots>x_{s_{d}}^{(d)}$.

(1) Select a descending sequence of variables $x_{p_{1}}^{\left(i_{1}\right)}, \ldots, x_{p_{t}}^{\left(i_{t}\right)}$ corresponding to pairwise non-adjacent vertices of T.

$$
x_{1}^{(1)}, x_{2}^{(1)}
$$

(2) Pick all edge monomials divisible by one of the variables $x_{p_{1}}^{\left(i_{1}\right)}, \ldots, x_{p_{t}}^{\left(i_{t}\right)}$.

$$
x_{1}^{(0)} x_{1}^{(1)}, \quad x_{1}^{(0)} x_{2}^{(1)}, \quad x_{1}^{(1)} x_{1}^{(2)}, \quad x_{1}^{(1)} x_{2}^{(2)}, \quad x_{2}^{(1)} x_{3}^{(2)}
$$

(3) Remove all monomials μ that are divisible by $x_{p_{h}}^{\left(i_{h}\right)}$ and are not coprime with respect to an element ν of the symbol divisible by $x_{p_{k}}^{\left(i_{k}\right)}$ for some $k>h$.

$$
x_{1}^{(0)} x_{1}^{(1)}, \quad x_{1}^{(0)} x_{2}^{(1)}, \quad x_{1}^{(1)} x_{1}^{(2)}, \quad x_{1}^{(1)} x_{2}^{(2)}, \quad x_{2}^{(1)} x_{3}^{(2)}
$$

(3) Remove all monomials μ that are divisible by $x_{p_{h}}^{\left(i_{h}\right)}$ and are not coprime with respect to an element ν of the symbol divisible by $x_{p_{k}}^{\left(i_{k}\right)}$ for some $k>h$.

$$
x_{1}^{(0)} x_{1}^{(1)}, \quad x_{1}^{(0)} x_{2}^{(1)}, \quad x_{1}^{(1)} x_{1}^{(2)}, \quad x_{1}^{(1)} x_{2}^{(2)}, \quad x_{2}^{(1)} x_{3}^{(2)}
$$

(4) Consider all subsymbols of the symbols obtained so far.

$$
\begin{aligned}
& {\left[X_{1}^{(0)} X_{2}^{(1)}, X_{1}^{(1)} X_{1}^{(2)}, X_{1}^{(1)} X_{2}^{(2)}\right], \quad\left[X_{1}^{(0)} X_{2}^{(1)}, x_{1}^{(1)} X_{1}^{(2)}, X_{1}^{(1)} X_{3}^{(2)}\right]} \\
& {\left[x_{1}^{(0)} x_{2}^{(1)}, x_{1}^{(1)} x_{2}^{(2)}, x_{2}^{(1)} x_{3}^{(2)}\right], \quad\left[x_{1}^{(1)} x_{1}^{(2)}, x_{1}^{(1)} x_{2}^{(2)}, x_{2}^{(1)} x_{3}^{(2)}\right]} \\
& {\left[x_{1}^{(0)} x_{2}^{(1)}, x_{1}^{(1)} x_{1}^{(2)}\right], \quad\left[x_{1}^{(0)} x_{2}^{(1)}, x_{1}^{(1)} x_{2}^{(2)}\right], \quad\left[x_{1}^{(0)} x_{2}^{(1)}, x_{2}^{(1)} x_{3}^{(2)}\right],} \\
& {\left[X_{1}^{(1)} X_{1}^{(2)}, x_{1}^{(1)} X_{2}^{(2)}\right], \quad\left[X_{1}^{(1)} X_{1}^{(2)}, x_{2}^{(1)} X_{3}^{(2)}\right], \quad\left[X_{1}^{(1)} x_{2}^{(2)}, x_{2}^{(1)} x_{3}^{(2)}\right],} \\
& {\left[X_{1}^{(0)} X_{2}^{(1)}\right], \quad\left[X_{1}^{(1)} X_{1}^{(2)}\right], \quad\left[X_{1}^{(1)} X_{2}^{(2)}\right], \quad\left[X_{1}^{(1)} X_{3}^{(2)}\right]}
\end{aligned}
$$

2.3. Bridges

Definition Let $x y$ and $z w$ be elements of a symbol \mathbf{u}, where $\boldsymbol{x y}>\boldsymbol{z w}$. If $x z \in I$, we say that $x z$ is the bridge between $x y$ and $z w$.
In this case, we will say that $x y$ and $z w$ form a gap in \mathbf{u} if $x z \notin \mathbf{u}$, no other monomial of \mathbf{u} other than $z w$ is divisible by w, and no monomial smaller than $z w$ is divisible by y.

2.3. Bridges

Definition Let $x y$ and $z w$ be elements of a symbol \mathbf{u}, where $x y>z w$. If $x z \in I$, we say that $x z$ is the bridge between $x y$ and $z w$.
In this case, we will say that $x y$ and $z w$ form a gap in \mathbf{u} if $x z \notin \mathbf{u}$, no other monomial of \mathbf{u} other than $z w$ is divisible by w, and no monomial smaller than $z w$ is divisible by y.

The last step of the procedure is
(5) Discard all symbols that contain a gap.

$$
\begin{array}{cc}
\frac{\left.x_{1}^{(0)} x_{2}^{(1)}, x_{1}^{(1)} x_{1}^{(2)}, x_{1}^{(1)} x_{2}^{(2)}\right],}{}\left[x_{1}^{(0)} x_{2}^{(1)}, x_{1}^{(1)} x_{1}^{(2)}, x_{1}^{(1)} x_{3}^{(2)}\right] \\
{\left[x_{1}^{(0)} x_{2}^{(1)}, x_{1}^{(1)} x_{2}^{(2)}, x_{2}^{(1)} x_{3}^{(2)}\right],} & {\left[x_{1}^{(1)} x_{1}^{(2)}, x_{1}^{(1)} x_{2}^{(2)}, x_{2}^{(1)} x_{3}^{(2)}\right]} \\
{\left[x_{1}^{(0)} x_{2}^{(1)}, x_{1}^{(1)} x_{1}^{(2)}\right],} & {\left[x_{1}^{(0)} x_{2}^{(1)}, x_{2}^{(1)} x_{2}^{(2)}\right],} \\
{\left[x_{1}^{(0)} x_{2}^{(1)}, x_{2}^{(1)} x_{1}^{(2)}\right],} \\
{\left[x_{1}^{(2)}, x_{1}^{(1)} x_{2}^{(2)}\right],} & {\left[x_{1}^{(1)} x_{1}^{(2)}, x_{2}^{(1)} x_{3}^{(2)}\right],} \\
{\left[x_{1}^{(0)} x_{2}^{(1)}\right],} & \left.\left[x_{1}^{(1)} x_{1}^{(2)}\right], x_{1}^{(2)}, x_{2}^{(1)} x_{3}^{(2)}\right] \\
\left.\hline x_{1}^{(1)} x_{2}^{(2)}\right], & {\left[x_{1}^{(1)} x_{3}^{(2)}\right]}
\end{array}
$$

The symbols obtained after 1-5 are called F-admissible for T.
Counting all F-admissible symbols of length r and degree d we can compute the graded Betti numbers $\beta_{r, d}(S / I(T))=\beta_{r-1, d}(I(T))$:
$0 \rightarrow S(-6)^{2} \rightarrow S(-4) \oplus S(-5)^{6} \rightarrow S(-3)^{6} \oplus S(-4)^{4} \rightarrow S(-2)^{6} \rightarrow I(T) \rightarrow 0$.
This is indeed a minimal free resolution of $I(T)$.

The symbols obtained after 1-5 are called F-admissible for T.
Counting all F-admissible symbols of length r and degree d we can compute the graded Betti numbers $\beta_{r, d}(S / I(T))=\beta_{r-1, d}(I(T))$:
$0 \rightarrow S(-6)^{2} \rightarrow S(-4) \oplus S(-5)^{6} \rightarrow S(-3)^{6} \oplus S(-4)^{4} \rightarrow S(-2)^{6} \rightarrow I(T) \rightarrow 0$.
This is indeed a minimal free resolution of $I(T)$.

For every r, let F_{r} be the free S-module generated by the F-admissible symbols of length r.

We show that F_{r} is the r-th module of a minimal graded free resolution of $S / I(T)$.

2.4. Minimal cellular resolution

Proposition (Batzies, Welker, 2002) There exists a CW-complex that is homotopy equivalent to the Taylor resolution and whose r-cells are in 1-to-1 correspondence with the F-admissible symbols of length r.

2.ヶ. Minimal cellular resolution

Proposition (Batzies, Welker, 2002) There exists a CW-complex that is homotopy equivalent to the Taylor resolution and whose r-cells are in 1-to-1 correspondence with the F-admissible symbols of length r.
[Batzies, Welker, 2002] describe explicitly the differentials $\partial_{r}: F_{r} \rightarrow$ F_{r-1} in terms of the F-admissible symbols.

Theorem The cellular resolution $\left(F_{r}, \partial_{r}\right)$ is a minimal graded free resolution of $S / I(T)$.

2.5. Betti numbers

We also found a new elementary proof of Jacques' recursive formulas for the graded Betti numbers and for the projective dimension.

Any tree T contains a vertex v such that among its neighbours v_{1}, \ldots, v_{m} at most one (say v_{m}) has degree greater than $\mathbf{1}$. Then call $T^{\prime}=T \backslash\left\{v_{1}\right\}$ and $T^{\prime \prime}=T \backslash\left\{\mathbf{v}, v_{1}, \ldots, v_{m}\right\}$.

Theorem (Jacques, 2004) For all indices r, d we have

$$
\beta_{r, d}(S / I(T))=\beta_{r, d}\left(S / I\left(T^{\prime}\right)\right)+\sum_{j=0}^{m-1}\binom{m-1}{j} \beta_{r-(j+1), d-(j+2)}\left(S / I\left(T^{\prime \prime}\right)\right) .
$$

Moreover,

$$
\operatorname{pd}(S / I(T))=\max \left\{\operatorname{pd}\left(S / I\left(T^{\prime}\right)\right), \operatorname{pd}\left(S / I\left(T^{\prime \prime}\right)\right)+m\right\}
$$

Thank you for listening!

