GAC Summer School

Paris - June 19, 2019

The minimal cellular resolution of the edge ideals of forests

Antonio Macchia Freie Universität Berlin

joint work with Margherita Barile (Università degli Studi di Bari)

Let $S = k[x_1, ..., x_n]$ and $I \subset S$ be a monomial ideal. A minimal graded free resolution of S/I encodes all information about I.

Let $S = k[x_1, ..., x_n]$ and $I \subset S$ be a monomial ideal. A minimal graded free resolution of S/I encodes all information about I.

A minimal graded free resolution of S/I is an exact sequence (Ker(φ_i) = Im(φ_{i+1})) of S-modules

$$0 \longrightarrow F_h \xrightarrow{\varphi_h} \cdots \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} F_0 \xrightarrow{\varphi_0} S/I \longrightarrow 0$$
,

where $F_i = \bigoplus_j S(-j)^{\beta_{ij}(S/I)} \neq o$ and $Im(\varphi_i) \subset (x_1, ..., x_n)F_{i-1}$.

Let $S = k[x_1, ..., x_n]$ and $I \subset S$ be a monomial ideal. A minimal graded free resolution of S/I encodes all information about I.

A minimal graded free resolution of S/I is an exact sequence (Ker(φ_i) = Im(φ_{i+1})) of S-modules

$$\mathbf{O} \longrightarrow F_h \xrightarrow{\varphi_h} \cdots \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} F_\mathbf{O} \xrightarrow{\varphi_\mathbf{O}} \mathbf{S}/I \longrightarrow \mathbf{O},$$

where $F_i = \bigoplus_j S(-j)^{\beta_{ij}(S/I)} \neq o$ and $Im(\varphi_i) \subset (x_1, ..., x_n)F_{i-1}$.

- $\beta_{ij}(S/I) \rightarrow$ graded Betti numbers of S/I
- $\beta_i(S/I) = \sum_j \beta_{ij}(S/I) = \operatorname{rank}(F_i) \to \text{total Betti numbers of } S/I$
- $pd(S/I) = h \rightarrow projective dimension of S/I$

Let $S = k[x_1, ..., x_n]$ and $I \subset S$ be a monomial ideal. A minimal graded free resolution of S/I encodes all information about I.

A minimal graded free resolution of S/I is an exact sequence (Ker(φ_i) = Im(φ_{i+1})) of S-modules

$$0 \longrightarrow F_h \xrightarrow{\varphi_h} \cdots \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} F_0 \xrightarrow{\varphi_0} S/I \longrightarrow 0,$$

where $F_i = \bigoplus_j S(-j)^{\beta_{ij}(S/I)} \neq o$ and $Im(\varphi_i) \subset (x_1, ..., x_n)F_{i-1}$.

- $\beta_{ij}(S/I) \rightarrow$ graded Betti numbers of S/I
- $\beta_i(S/I) = \sum_j \beta_{ij}(S/I) = \operatorname{rank}(F_i) \to \text{total Betti numbers of } S/I$
- $pd(S/I) = h \rightarrow projective dimension of S/I$

Problem

- Find classes of ideals whose minimal resolutions can be easily described.
- Describe non-minimal resolutions for large classes of monomial ideals.

Example Let $I = (x^4, y^4, z^4, x^3y^2z, xy^3z^2, x^2yz^3) \subset S = k[x, y, z]$. We can draw a 3-dimensional staircase diagram to represent I.

Then we draw a graph in which we connect two minimal generators of *I* when they "look adjacent". We label each edge and each triangular face according to the exponent vector of the lcm of its vertices.

Simplicial resolutions were introduced by [Bayer, Peeva, Sturmfels, 1998].

Let Δ be a simplicial complex whose vertices are labeled by the minimal generators of a monomial ideal $I \subset S$. Each face F of Δ is labeled by the least common multiple of its vertices, denoted by $\mathbf{m}_F = \mathbf{x}^{\mathbf{a}_F}$.

Simplicial resolutions were introduced by [Bayer, Peeva, Sturmfels, 1998].

Let Δ be a simplicial complex whose vertices are labeled by the minimal generators of a monomial ideal $I \subset S$. Each face F of Δ is labeled by the least common multiple of its vertices, denoted by $\mathbf{m}_F = \mathbf{x}^{\mathbf{a}_F}$.

Let \mathcal{F}_{Δ} be the **reduced chain complex** of Δ over **S** defined by

$$\mathcal{F}_{\Delta} = \bigoplus_{F \in \Delta} S(-\mathbf{a}_F), \quad \varphi(F) = \sum_{G \text{ facet of } F} \operatorname{sign}(G, F) \mathbf{x}^{\mathbf{a}_F - \mathbf{a}_G} G,$$

where F, G are thought of both as faces of Δ and as basis vectors in degrees \mathbf{a}_F and \mathbf{a}_G . Moreover, $\operatorname{sign}(G, F)$ equals +1 if F's orientation induces G's orientation and -1 otherwise.

Proposition (BPS, 1998) The complex \mathcal{F}_{Δ} is exact and defines a free resolution of I if and only if for every monomial **m**, the complex

 $\Delta_{\preceq \mathbf{m}} = \{ \mathbf{F} \in \Delta : \mathbf{m}_{\mathbf{F}} \text{ divides } \mathbf{m} \}$

is empty or acyclic over **k** (i.e., it has zero reduced homology). In this case, we call \mathcal{F}_{Δ} a simplicial resolution of I supported by Δ .

Proposition (BPS, 1998) The complex \mathcal{F}_{Δ} is exact and defines a free resolution of I if and only if for every monomial **m**, the complex

 $\Delta_{\preceq \mathbf{m}} = \{ F \in \Delta : \mathbf{m}_F \text{ divides } \mathbf{m} \}$

is empty or acyclic over **k** (i.e., it has zero reduced homology). In this case, we call \mathcal{F}_{Δ} a simplicial resolution of **I** supported by Δ .

Example Let $I = (x^2y, xz, yz^2, y^2) \subset S = k[x, y, z]$ and consider the simplicial complexes X and Y on the generators of I:

X supports the free resolution \mathcal{F}_X : O \rightarrow S^2 \rightarrow S^5 \rightarrow S^4 \rightarrow I \rightarrow 0.

Proposition (BPS, 1998) The complex \mathcal{F}_{Δ} is exact and defines a free resolution of I if and only if for every monomial **m**, the complex

 $\Delta_{\preceq \mathbf{m}} = \{ F \in \Delta : \mathbf{m}_F \text{ divides } \mathbf{m} \}$

is empty or acyclic over **k** (i.e., it has zero reduced homology). In this case, we call \mathcal{F}_{Δ} a simplicial resolution of I supported by Δ .

Example Let $I = (x^2y, xz, yz^2, y^2) \subset S = k[x, y, z]$ and consider the simplicial complexes X and Y on the generators of I:

X supports the free resolution $\mathcal{F}_X : \mathbf{0} \to S^2 \to S^5 \to S^4 \to I \to \mathbf{0}$. Y does not support a free resolution of I: $Y_{\leq xy^2z}$ consists of the two vertices xz and y^2 , hence it is not acyclic.

1.3. Minimality

Proposition (BPS, 1998) Let \mathcal{F}_{Δ} be a free resolution of the monomial ideal I supported by the labeled simplicial complex Δ . Then \mathcal{F}_{Δ} is a minimal free resolution if and only if any two comparable faces $\mathbf{G} \subset \mathbf{F}$ of Δ have distinct degrees, i.e. $\mathbf{m}_{G} \neq \mathbf{m}_{F}$.

1.3. Minimality

Proposition (BPS, 1998) Let \mathcal{F}_{Δ} be a free resolution of the monomial ideal I supported by the labeled simplicial complex Δ . Then \mathcal{F}_{Δ} is a minimal free resolution if and only if any two comparable faces $\mathbf{G} \subset \mathbf{F}$ of Δ have distinct degrees, i.e. $\mathbf{m}_{G} \neq \mathbf{m}_{F}$.

Example Let $I = (x^2, xy, y^3) \subset S = k[x, y]$ and consider the simplicial complexes X and Y on the generators of I: Х Both X and Y support a free resolution of I: $\mathcal{F}_{X}: 0 \to S \to S^{3} \to S^{3} \to I \to 0$ $\mathcal{F}_{Y}: 0 \to S^{2} \to S^{3} \to I \to 0$ $\mathcal{F}_{\mathbf{Y}}$ is minimal; $\mathcal{F}_{\mathbf{X}}$ is not minimal: the triangle and one of its edges have the same label x^2y^3 .

1.4. The Taylor resolution (1966)

If *I* is a monomial ideal with *r* minimal generators, let Δ be the full (*r* – 1)-dimensional simplex whose *r* vertices are labeled by the generators **m**₁, ..., **m**_s.

1.4. The Taylor resolution (1966)

If *I* is a monomial ideal with *r* minimal generators, let Δ be the full (*r* – 1)-dimensional simplex whose *r* vertices are labeled by the generators **m**₁, ..., **m**_s.

For any monomial **m**, the subcomplex $\Delta_{\preceq m}$ is a face of Δ , i.e., the full simplex on all monomials **m**_i dividing **m**.

In particular, $\Delta_{\preceq m}$ is contractible, hence acyclic. Thus \mathcal{F}_{Δ} is a simplicial resolution of I called Taylor resolution.

1.4. The Taylor resolution (1966)

If *I* is a monomial ideal with *r* minimal generators, let Δ be the full (*r* – 1)-dimensional simplex whose *r* vertices are labeled by the generators **m**₁, ..., **m**_s.

For any monomial **m**, the subcomplex $\Delta_{\preceq m}$ is a face of Δ , i.e., the full simplex on all monomials **m**_i dividing **m**.

In particular, $\Delta_{\preceq m}$ is contractible, hence acyclic. Thus \mathcal{F}_{Δ} is a simplicial resolution of I called Taylor resolution.

The Taylor resolution is often not minimal.

1.5. Make a cellular resolution minimal

Using **Discrete Morse Theory**, one can hope to prune a cellular resolution to get a minimal one. Algorithms by

- Àlvarez Montaner, Fernández-Ramos, Gimenez (2017)
- Torrente, Varbaro (2018)

1.5. Make a cellular resolution minimal

Using **Discrete Morse Theory**, one can hope to prune a cellular resolution to get a minimal one. Algorithms by

- Àlvarez Montaner, Fernández-Ramos, Gimenez (2017)
- Torrente, Varbaro (2018)

Bad news: Velasco (2008) constructed monomial ideals whose minimal free resolution is not supported by any CW-complex.

1.5. Make a cellular resolution minimal

Using **Discrete Morse Theory**, one can hope to prune a cellular resolution to get a minimal one. Algorithms by

- Àlvarez Montaner, Fernández-Ramos, Gimenez (2017)
- Torrente, Varbaro (2018)

Bad news: Velasco (2008) constructed monomial ideals whose minimal free resolution is not supported by any CW-complex.

Minimal cellular resolutions have been found for

- generic and shellable monomial modules [Batzies, Welker, 2002],
- the powers of the edge ideals of paths [Engström, Norén, 2012],
- the Eliahou-Kervaire resolution for stable ideals [Mermin, 2010],
- the matroid ideal of a finite projective space [Novik, 2002].

Definition Let G be a graph on the vertex set [n] and $S = k[x_1, ..., x_n]$. The **edge ideal** of G is the squarefree monomial ideal

 $I(G) = (x_i x_j : \{i, j\} \in E(G)) \subset S.$

Definition Let G be a graph on the vertex set [n] and $S = k[x_1, ..., x_n]$. The **edge ideal** of G is the squarefree monomial ideal

$$I(G) = (x_i x_j : \{i, j\} \in E(G)) \subset S.$$

Here we consider **trees** that are connected graphs without cycles.

2.2. The algorithm

Fix a vertex $x_1^{(o)}$ of T and call $x_1^{(i)}, ..., x_{s_i}^{(i)}$ the vertices lying at distance i from $x_1^{(o)}$. Consider the lexicographic order induced by $x_1^{(o)} > x_1^{(1)} > \cdots > x_{s_i}^{(d)} > \cdots > x_{s_i}^{(d)}$.

2.2. The algorithm

Fix a vertex $x_1^{(o)}$ of T and call $x_1^{(i)}, ..., x_{s_i}^{(i)}$ the vertices lying at distance i from $x_1^{(o)}$. Consider the lexicographic order induced by $x_1^{(o)} > x_1^{(1)} > \cdots > x_{s_1}^{(1)} > \cdots > x_1^{(d)} > \cdots > x_{s_d}^{(d)}$.

1 Select a descending sequence of variables $x_{p_1}^{(i_1)}, ..., x_{p_t}^{(i_t)}$ corresponding to pairwise non-adjacent vertices of T.

 $X_1^{(1)}, X_2^{(1)}$

2.2. The algorithm

Fix a vertex $\mathbf{x}_1^{(o)}$ of T and call $\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_{s_i}^{(i)}$ the vertices lying at distance i from $\mathbf{x}_1^{(o)}$. Consider the lexicographic order induced by $\mathbf{x}_1^{(o)} > \mathbf{x}_1^{(1)} > \cdots > \mathbf{x}_{s_1}^{(d)} > \cdots > \mathbf{x}_{s_d}^{(d)}$.

1 Select a descending sequence of variables $x_{p_1}^{(i_1)}, ..., x_{p_t}^{(i_t)}$ corresponding to pairwise non-adjacent vertices of T.

$X_1^{(1)}, X_2^{(1)}$

2 Pick all edge monomials divisible by one of the variables $x_{p_1}^{(i_1)}, ..., x_{p_t}^{(i_t)}$. $x_1^{(0)}x_1^{(1)}, x_1^{(0)}x_2^{(1)}, x_1^{(1)}x_1^{(2)}, x_1^{(1)}x_2^{(2)}, x_2^{(1)}x_3^{(2)}$ **3** Remove all monomials μ that are divisible by $x_{p_h}^{(i_h)}$ and are not coprime with respect to an element ν of the symbol divisible by $x_{p_h}^{(i_h)}$ for some k > h.

 $x_1^{(0)} x_1^{(1)}, x_1^{(0)} x_2^{(1)}, x_1^{(1)} x_1^{(2)}, x_1^{(1)} x_2^{(2)}, x_2^{(1)} x_3^{(2)}$

3 Remove all monomials μ that are divisible by $x_{p_h}^{(i_h)}$ and are not coprime with respect to an element ν of the symbol divisible by $x_{p_h}^{(i_h)}$ for some k > h.

 $X_{1}^{(0)}$, $X_{1}^{(0)}$, $X_{2}^{(1)}$, $X_{1}^{(1)}$, $X_{1}^{(2)}$, $X_{1}^{(1)}$, $X_{2}^{(2)}$, $X_{2}^{(1)}$, $X_{3}^{(2)}$

Consider all subsymbols of the symbols obtained so far. $\begin{bmatrix} x_1^{(0)}x_2^{(1)}, x_1^{(1)}x_1^{(2)}, x_1^{(1)}x_2^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(0)}x_2^{(1)}, x_1^{(1)}x_1^{(2)}, x_1^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(0)}x_2^{(1)}, x_1^{(1)}x_2^{(2)}, x_2^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(1)}x_1^{(2)}, x_1^{(1)}x_2^{(2)}, x_2^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(0)}x_2^{(1)}, x_1^{(1)}x_2^{(2)}, x_2^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(0)}x_2^{(1)}, x_1^{(1)}x_2^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(0)}x_2^{(1)}, x_1^{(1)}x_2^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(0)}x_2^{(1)}, x_2^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(1)}x_1^{(2)}, x_2^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(1)}x_1^{(2)}, x_2^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(1)}x_1^{(2)}, x_2^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(0)}x_2^{(1)}, x_2^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(1)}x_2^{(2)}, x_2^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(0)}x_2^{(1)}, x_2^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(0)}x_2^{(1)}, x_2^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(1)}x_2^{(2)}, x_2^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(1)}x_3^{(2)} \end{bmatrix}, \begin{bmatrix} x_1^{(1)}x_3^{(1)} \end{bmatrix}, \begin{bmatrix} x_1^{(1)}x_3^{(1)$

2.3. Bridges

Definition Let xy and zw be elements of a symbol **u**, where xy > zw. If $xz \in I$, we say that xz is the bridge between xy and zw.

In this case, we will say that xy and zw form a gap in **u** if $xz \notin \mathbf{u}$, no other monomial of **u** other than zw is divisible by w, and no monomial smaller than zw is divisible by y.

2.3. Bridges

Definition Let xy and zw be elements of a symbol **u**, where xy > zw. If $xz \in I$, we say that xz is the bridge between xy and zw.

In this case, we will say that xy and zw form a gap in **u** if $xz \notin \mathbf{u}$, no other monomial of **u** other than zw is divisible by w, and no monomial smaller than zw is divisible by y.

The last step of the procedure is

5 Discard all symbols that contain a gap.

 $\begin{bmatrix} \mathbf{x}_{1}^{(0)} \mathbf{x}_{2}^{(1)}, \mathbf{x}_{1}^{(1)} \mathbf{x}_{1}^{(2)}, \mathbf{x}_{1}^{(1)} \mathbf{x}_{2}^{(2)} \end{bmatrix}, \begin{bmatrix} \mathbf{x}_{1}^{(0)} \mathbf{x}_{2}^{(1)}, \mathbf{x}_{1}^{(1)} \mathbf{x}_{1}^{(2)}, \mathbf{x}_{1}^{(1)} \mathbf{x}_{3}^{(2)} \end{bmatrix} \\ \begin{bmatrix} \mathbf{x}_{1}^{(0)} \mathbf{x}_{2}^{(1)}, \mathbf{x}_{1}^{(1)} \mathbf{x}_{2}^{(2)}, \mathbf{x}_{2}^{(1)} \mathbf{x}_{3}^{(2)} \end{bmatrix}, \begin{bmatrix} \mathbf{x}_{1}^{(1)} \mathbf{x}_{1}^{(2)}, \mathbf{x}_{1}^{(1)} \mathbf{x}_{2}^{(2)}, \mathbf{x}_{3}^{(1)} \mathbf{x}_{3}^{(2)} \end{bmatrix} \\ \begin{bmatrix} \mathbf{x}_{1}^{(0)} \mathbf{x}_{2}^{(1)}, \mathbf{x}_{1}^{(1)} \mathbf{x}_{2}^{(2)} \end{bmatrix}, \begin{bmatrix} \mathbf{x}_{1}^{(0)} \mathbf{x}_{2}^{(1)}, \mathbf{x}_{2}^{(1)} \mathbf{x}_{3}^{(2)} \end{bmatrix}, \begin{bmatrix} \mathbf{x}_{1}^{(0)} \mathbf{x}_{2}^{(1)}, \mathbf{x}_{2}^{(1)} \mathbf{x}_{3}^{(2)} \end{bmatrix}, \begin{bmatrix} \mathbf{x}_{1}^{(1)} \mathbf{x}_{1}^{(2)}, \mathbf{x}_{2}^{(1)} \mathbf{x}_{3}^{(2)} \end{bmatrix}, \begin{bmatrix} \mathbf{x}_{1}^{(1)} \mathbf{x}_{2}^{(1)}, \mathbf{x}_{3}^{(1)} \mathbf{x}_{3}^{(2)} \end{bmatrix} \\ \begin{bmatrix} \mathbf{x}_{1}^{(0)} \mathbf{x}_{1}^{(1)} \mathbf{x}_{2}^{(2)} \end{bmatrix}, \begin{bmatrix} \mathbf{x}_{1}^{(1)} \mathbf{x}_{1}^{(2)} \mathbf{x}_{1}^{(1)} \mathbf{x}_{3}^{(2)} \end{bmatrix}, \begin{bmatrix} \mathbf{x}_{1}^{(1)} \mathbf{x}_{2}^{(2)} \mathbf{x}_{1}^{(1)} \mathbf{x}_{3}^{(2)} \end{bmatrix} \\ \begin{bmatrix} \mathbf{x}_{1}^{(0)} \mathbf{x}_{2}^{(1)} \end{bmatrix}, \begin{bmatrix} \mathbf{x}_{1}^{(1)} \mathbf{x}_{1}^{(2)} \end{bmatrix}, \begin{bmatrix} \mathbf{x}_{1}^{(1)} \mathbf{x}_{2}^{(2)} \end{bmatrix}, \begin{bmatrix} \mathbf{x}_{1}^{(1)} \mathbf{x}_{3}^{(2)} \end{bmatrix} \end{bmatrix}$

The symbols obtained after **1**-**5** are called *F*-admissible for *T*.

Counting all *F*-admissible symbols of length *r* and degree *d* we can compute the graded Betti numbers $\beta_{r,d}(S/I(T)) = \beta_{r-1,d}(I(T))$:

 $O \!\rightarrow\! S(-6)^2 \!\rightarrow\! S(-4) \oplus S(-5)^6 \!\rightarrow\! S(-3)^6 \oplus S(-4)^4 \!\rightarrow\! S(-2)^6 \!\rightarrow\! I(T) \!\rightarrow\! O.$

This is indeed a minimal free resolution of I(T).

The symbols obtained after **1**-**5** are called *F***-admissible** for *T*.

Counting all *F*-admissible symbols of length *r* and degree *d* we can compute the graded Betti numbers $\beta_{r,d}(S/I(T)) = \beta_{r-1,d}(I(T))$:

 $O \to S(-6)^2 \to S(-4) \oplus S(-5)^6 \to S(-3)^6 \oplus S(-4)^4 \to S(-2)^6 \to I(T) \to O.$

This is indeed a minimal free resolution of I(T).

For every *r*, let *F*_r be the free *S*-module generated by the *F*-admissible symbols of length *r*.

We show that F_r is the r-th module of a minimal graded free resolution of S/I(T).

Proposition (Batzies, Welker, 2002) There exists a CW-complex that is homotopy equivalent to the Taylor resolution and whose **r**-cells are in 1-to-1 correspondence with the **F**-admissible symbols of length **r**.

Proposition (Batzies, Welker, 2002) There exists a CW-complex that is homotopy equivalent to the Taylor resolution and whose **r**-cells are in 1-to-1 correspondence with the **F**-admissible symbols of length **r**.

[Batzies, Welker, 2002] describe explicitly the differentials $\partial_r : F_r \rightarrow F_{r-1}$ in terms of the *F*-admissible symbols.

Theorem The cellular resolution (F_r, ∂_r) is a minimal graded free resolution of S/I(T).

We also found a new elementary proof of Jacques' recursive formulas for the graded Betti numbers and for the projective dimension.

Any tree *T* contains a vertex *v* such that among its neighbours $v_1, ..., v_m$ at most one (say v_m) has degree greater than 1. Then call $T' = T \setminus \{v_1\}$ and $T'' = T \setminus \{v, v_1, ..., v_m\}$.

Theorem (Jacques, 2004) For all indices r, d we have

$$\beta_{r,d}(S/I(T)) = \beta_{r,d}(S/I(T')) + \sum_{j=0}^{m-1} {m-1 \choose j} \beta_{r-(j+1),d-(j+2)}(S/I(T'')).$$

Moreover,

 $pd(S/I(T)) = \max\{pd(S/I(T')), pd(S/I(T'')) + m\}.$

Thank you for listening!