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1.1. Minimal free resolutions

Let S = k[x1, ... , xn] and I ⊂ S be a monomial ideal. A minimal graded
free resolution of S/I encodes all information about I.

A minimal graded free resolution of S/I is an exact sequence (Ker(ϕi) =

Im(ϕi+1)) of S-modules

0 −→ Fh
ϕh−→ · · · ϕ2−→ F1

ϕ1−→ F0
ϕ0−→ S/I −→ 0,

where Fi =
⊕

j S(−j)βij(S/I) 6= 0 and Im(ϕi) ⊂ (x1, ... , xn)Fi−1.

• βij(S/I)→ graded Betti numbers of S/I
• βi(S/I) =

∑
j βij(S/I) = rank(Fi)→ total Betti numbers of S/I

• pd(S/I) = h→ projective dimension of S/I

Problem
• Find classes of ideals whose minimal resolutions can be easily described.

• Describe non-minimal resolutions for large classes of monomial ideals.
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Example Let I = (x4, y4, z4, x3y2z, xy3z2, x2yz3) ⊂ S = k[x, y, z].
We can draw a 3-dimensional staircase diagram to represent I.
Then we draw a graph in which we connect two minimal generators of I when
they “look adjacent”. We label each edge and each triangular face according
to the exponent vector of the lcm of its vertices.

The minimal free resolution of I can be read o� this figure:

0 −→ S7 −→ S12 −→ S6 −→ I −→ 0,

where the exponents correspond to 6 vertices, 12 edges and 7 triangles.



1.2. Simplicial resolutions

Simplicial resolutions were introduced by [Bayer, Peeva, Sturmfels,
1998].

Let ∆ be a simplicial complex whose vertices are labeled by the mini-
mal generators of a monomial ideal I ⊂ S. Each face F of ∆ is labeled
by the least common multiple of its vertices, denoted by mF = xaF .

Let F∆ be the reduced chain complex of ∆ over S defined by

F∆ =
⊕
F∈∆

S(−aF), ϕ(F) =
∑

G facet of F

sign(G, F)xaF−aGG,

where F,G are thought of both as faces of ∆ and as basis vectors in
degrees aF and aG. Moreover, sign(G, F) equals +1 if F’s orientation
induces G’s orientation and −1 otherwise.
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Proposition (BPS, 1998) The complex F∆ is exact and defines a free
resolution of I if and only if for every monomial m, the complex

∆�m = {F ∈ ∆ : mF divides m}

is empty or acyclic over k (i.e., it has zero reduced homology). In this
case, we call F∆ a simplicial resolution of I supported by ∆.

Example Let I = (x2y, xz, yz2, y2) ⊂ S = k[x, y, z] and consider the
simplicial complexes X and Y on the generators of I:

220

022

112

211

x2y=210 020=y2

012=yz2xz=101

221

122
121121

X

220

022

112

211

x2y=210

012=yz2

212

222
212212

Y

020=y2

xz=101

X supports the free resolution FX : 0 → S2 → S5 → S4 → I → 0.

Y does not support a free resolution of I: Y�xy2z consists of the two
vertices xz and y2, hence it is not acyclic.
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1.3. Minimality

Proposition (BPS, 1998) Let F∆ be a free resolution of the monomial
ideal I supported by the labeled simplicial complex ∆. Then F∆ is a
minimal free resolution if and only if any two comparable faces G ⊂ F
of ∆ have distinct degrees, i.e. mG 6= mF .

Example Let I = (x2, xy, y3) ⊂ S = k[x, y] and consider the simplicial
complexes X and Y on the generators of I:

x2y3

x2y xy3

x2 y3

xy

x2y3

X

x2y xy3

x2 y3

xyY

Both X and Y support a free resolution of I:

FX : 0→ S→ S3 → S3 → I→ 0 FY : 0→ S2 → S3 → I→ 0

FY is minimal; FX is not minimal: the triangle and one of its edges
have the same label x2y3.
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1.4. The Taylor resolution (1966)

If I is a monomial ideal with r minimal generators, let ∆ be the full (r−
1)-dimensional simplex whose r vertices are labeled by the generators
m1, ... ,ms.

For any monomial m, the subcomplex ∆�m is a face of ∆, i.e., the full
simplex on all monomials mi dividing m.
In particular, ∆�m is contractible, hence acyclic. ThusF∆ is a simplicial
resolution of I called Taylor resolution.

Example Let I = (x2, xy, y3) ⊂ S = k[x, y]. The Taylor resolution of I is

x2y3

x2y xy3

x2 y3

xy

x2y3

∆

F∆ : 0 → S→ S3 → S3 → I→ 0

The Taylor resolution is often not minimal.
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1.5. Make a cellular resolution minimal

Using Discrete Morse Theory, one can hope to prune a cellular reso-
lution to get a minimal one. Algorithms by
• Àlvarez Montaner, Fernández-Ramos, Gimenez (2017)
• Torrente, Varbaro (2018)

Bad news: Velasco (2008) constructed monomial ideals whose mini-
mal free resolution is not supported by any CW-complex.

Minimal cellular resolutions have been found for
• generic and shellable monomial modules [Batzies, Welker, 2002],
• the powers of the edge ideals of paths [Engström, Norén, 2012],
• the Eliahou-Kervaire resolution for stable ideals [Mermin, 2010],
• the matroid ideal of a finite projective space [Novik, 2002].
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2.1. Edge ideals of trees

Definition Let G be a graph on the vertex set [n] and S = k[x1, ... , xn].
The edge ideal of G is the squarefree monomial ideal

I(G) = (xixj : {i, j} ∈ E(G)) ⊂ S.

Here we consider trees that are connected graphs without cycles.

Example Let T be the following tree:

1

2 3

4

5

6 7

I(T)=

(
x1x2, x1x4, x2x3,
x4x5, x4x6, x6x7

)
⊂ k[x1, ... , x7]
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2.2. The algorithm

Fix a vertex x(0)
1 of T and call x(i)
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(i)
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3 Remove all monomials µ that are divisible by x(ih)
ph and are not co-

prime with respect to an element ν of the symbol divisible by x(ik)
pk

for some k > h.
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2.3. Bridges

Definition Let xy and zw be elements of a symbol u, where xy > zw. If
xz ∈ I, we say that xz is the bridge between xy and zw.
In this case, we will say that xy and zw form a gap in u if xz /∈ u, no
other monomial of u other than zw is divisible by w, and no monomial
smaller than zw is divisible by y.

b y x z w a
by < zw
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5 Discard all symbols that contain a gap.
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[((((
((((

(hhhhhhhhhx(0)
1 x(1)

2 , x(1)
1 x(2)

1 , x(1)
1 x(2)

2 ], [x(0)
1 x(1)

2 , x(1)
1 x(2)

1 , x(1)
1 x(2)

3 ]

[x(0)
1 x(1)

2 , x(1)
1 x(2)

2 , x(1)
2 x(2)

3 ], [x(1)
1 x(2)

1 , x(1)
1 x(2)

2 , x(1)
2 x(2)

3 ]

[((((
((hhhhhhx(0)

1 x(1)
2 , x(1)

1 x(2)
1 ], [((((

((hhhhhhx(0)
1 x(1)

2 , x(1)
2 x(2)

2 ], [x(0)
1 x(1)

2 , x(1)
2 x(2)

3 ],

[x(1)
1 x(2)

1 , x(1)
1 x(2)

2 ], [x(1)
1 x(2)

1 , x(1)
2 x(2)

3 ], [x(1)
1 x(2)

2 , x(1)
2 x(2)

3 ]

[x(0)
1 x(1)

2 ], [x(1)
1 x(2)

1 ], [x(1)
1 x(2)

2 ], [x(1)
1 x(2)

3 ]



The symbols obtained after 1 - 5 are called F-admissible for T.

Counting all F-admissible symbols of length r and degree d we can
compute the graded Betti numbers βr,d(S/I(T)) = βr−1,d(I(T)):

0→S(−6)2→S(−4)⊕ S(−5)6→S(−3)6 ⊕ S(−4)4→S(−2)6→ I(T)→0.

This is indeed a minimal free resolution of I(T).

For every r, let Fr be the free S-module generated by the F-admissible
symbols of length r.

We show that Fr is the r-th module of a minimal graded free resolution
of S/I(T).
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2.4. Minimal cellular resolution

Proposition (Batzies, Welker, 2002) There exists a CW-complex that is
homotopy equivalent to the Taylor resolution and whose r-cells are in
1-to-1 correspondence with the F-admissible symbols of length r.

[Batzies, Welker, 2002] describe explicitly the di�erentials ∂r : Fr →
Fr−1 in terms of the F-admissible symbols.

Theorem The cellular resolution (Fr, ∂r) is a minimal graded free res-
olution of S/I(T).
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2.5. Betti numbers

We also found a new elementary proof of Jacques’ recursive formulas
for the graded Betti numbers and for the projective dimension.

Any tree T contains a vertex v such that among its neighbours v1, ... , vm
at most one (say vm) has degree greater than 1. Then call T′ = T \ {v1}
and T′′ = T \ {v, v1, ... , vm}.

Theorem (Jacques, 2004) For all indices r,d we have

βr,d(S/I(T)) = βr,d(S/I(T′)) +
m−1∑
j=0

(
m− 1
j

)
βr−(j+1),d−(j+2)(S/I(T′′)).

Moreover,

pd(S/I(T)) = max{pd(S/I(T′)), pd(S/I(T′′)) +m}.



Thank you for listening!
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