Quantitative Properties of Ideals Arising from Hierarchical Models

Summer School on Geometric and Algebraic Combinatorics
June 24, 2019

Algebraic Statistics Dictionary

Probability/Statistics	Algebra/Geometry
Probability distribution	Point
Statistical model	(Semi) Algebraic set
Discrete exponential family	Toric variety
Conditional interference	Lattice points in polytopes
Maximum likelihood estima- tion	Polynomial optimization
Model selection	Geometry of singularities
Multivariate Gaussian model	Spectral geometry
Phylogenetic model	Tensor networks
MAP estimates	Tropical geometry

From Alg. Stat. book of S. Sullivant

Statistical Models

Part 1

Hierarchical Models

- record the dependency relationships of random variables

Applications

			Type of Infection	
		Varicella	Influenza	Gastroenteritis
Use Aspirin	Yes	29	21	2
regularly	No	704	188	125

Data on the use of Aspirin from 1070 patients with Reye's Syndrome in US from 1980 to 1997.

Question: Among patients with Reye's syndrome, is there any relation between the type of infection and the use of Aspirin to treat that infection?

Running Example

- $\Omega_{1}=\{$ Varicella, Influenza, Gastroenteritis $\} \quad \mathrm{r}_{1}=3$
- $\Omega_{2}=\{$ Use Aspirin reg., Don't use Aspirin reg. $\} \quad \mathrm{r}_{2}=2$
- $\left(Z_{1}, Z_{2}\right) \in \Omega_{1} \times \Omega_{2}$
- $P\left(Z_{1}=i, Z_{2}=j\right)=p_{i, j}$
- $\mathcal{P}=\left\{\left(p_{i, j}\right) \mid(i, j) \in \Omega_{1} \times \Omega_{2}, \sum_{i, j} p_{i, j}=1\right\}$

$$
\mathrm{M}_{1}=\left\{\left(p_{i, j}\right) \in \mathcal{P} \mid p_{i, j}=p_{i, \bullet} \cdot p_{\bullet, j}, \text { for all }(i, j) \in \Omega_{1} \times \Omega_{2}\right\}
$$

$$
\mathrm{M}_{2}=\mathcal{P} / M_{1}
$$

Running Example

Visualizations of the Models

$$
\mathrm{M}_{1}=\left\{\left(p_{i, j}\right) \mid p_{i, j}=p_{i, \bullet} \cdot p_{\bullet}, j\right\} \quad \mathrm{M}_{2}=\mathcal{P} / \mathcal{M}_{1}
$$

r_{1}
r_{2}

Analyzing Data

- $\Omega_{1}=\{$ Varicella, Influenza, Gastroenteritis $\} \quad \mathrm{r}_{1}=3$
- $\Omega_{2}=\{$ Use Aspirin reg., Don't use Aspirin reg. $\} \quad \mathrm{r}_{2}=2$
- $\Omega_{3}=\{$ children, teenagers $\} \quad \mathrm{r}_{3}=2$

Choose the model that best fits the data.

Hierarchical Models

Definition

A hierarchical model \mathcal{M} on m randon variables consists of
(1) a vector $\mathbf{r}=\left(r_{1}, r_{2}, \cdots, r_{m}\right)$, where each r_{i} denotes the number of states for the variable Z_{i}.
(2) a collection $\Delta=\left\{F_{1}, F_{2}, \cdots, F_{n}\right\}$, where each $F_{j} \subset[m]$ in the collection encodes a maximal non independent relation among the parameters indicated in it.

$$
\mathcal{M}(\mathbf{r}, \Delta)=\left\{\left(p_{i_{1} \ldots i_{m}}\right) \mid p_{i_{1}, \ldots, i_{m}}=\prod_{F \in \Delta} p_{\mathbf{i}_{F}} \text { for all }\left(i_{1} \ldots i_{m}\right) \in \prod_{k \in[m]}\left[r_{k}\right]\right\}
$$

How to choose the right model?

Part 2

Ideals of Hierarchical Models in Algebra

Constructing the Ideal

$$
\begin{aligned}
\mathbb{K}\left[X_{111}, X_{112} \ldots X_{322}\right] & \xrightarrow{\mathbb{K}}\left[Y_{11} \ldots Y_{32}, Z_{11} \ldots Z_{32}\right], \\
X_{i j k} & \longmapsto Y_{i j} \cdot Z_{i k}
\end{aligned}
$$

$\mathcal{M}[(3,2,2),\{\{1,2\},\{1,3\}\}]$

$$
I=\operatorname{ker}(\phi) \text { is the ideal for } \mathcal{M}
$$

$$
\begin{gathered}
I=<X_{111} X_{122}-X_{112} X_{121}, \\
X_{211} X_{222}-X_{212} X_{221}, \\
X_{311} X_{322}-X_{312} X_{321}>
\end{gathered}
$$

General Construction

Let $\mathcal{M}(\mathbf{r}, \Delta)$ be a hierarchical model.

$$
\begin{aligned}
& \mathbb{K}\left[X_{i_{1} \ldots i_{m}} \mid\left(i_{1}, \ldots i_{m}\right) \in \prod_{i \in[m]}\left[r_{i}\right]\right] \xrightarrow{\phi} \mathbb{K}\left[Y_{F, \mathbf{j}_{F}} \mid F \in \Delta, \quad \mathbf{j}_{F} \in \prod_{i \in F}\left[r_{i}\right]\right] \\
& \mathrm{X}_{\mathbf{i}} \longmapsto \prod_{F \in \Delta} Y_{F, \mathbf{i}_{F}}
\end{aligned}
$$

$$
\text { Note: }\left[r_{i}\right]=\left\{1,2, \ldots, r_{i}\right\}
$$

$$
I=\operatorname{ker}(\phi) \text { is the ideal for } \mathcal{M}
$$

$$
I=<\left\{\overline{\mathrm{x}}^{\mathbf{u}}-\overline{\mathrm{x}}^{\mathbf{v}}\right\}>
$$

Fundamental Theorem of Markov Bases [Diaconis-Sturmfels, 1998]

A subset $\beta \subset k e r_{\mathbb{Z}} A$ is a Markov Basis for \mathcal{M} if and only if the corresponding set of binomials $\left\{\overline{\mathrm{x}}^{b^{+}}-\overline{\mathrm{x}}^{b^{-}} \mid b=b^{+}-b^{-} \in \beta\right\}$ generates the ideal I.
Note: b^{+}and b^{-}are respectively positive and negative part of the vector b.

Part 3

Quantitative Properties of the Ideals

Let R be a graded polynomial ring in finitely many variables over a field \mathbb{K} and I a homogeneous ideal in R.

$$
R / I=[R / I]_{0} \oplus[R / I]_{1} \oplus \cdots \oplus[R / I]_{d} \oplus \ldots
$$

where $[R / I]_{d}=\{$ all homogeneous polynomials of degree d in $R / I\}$

$$
\mathrm{H}_{R / I}(t)=\sum_{d \geq 0} \operatorname{dim}_{\mathbb{K}}[R / I]_{d} \cdot t^{d}
$$

Hilbert series are rational of the form

$$
H_{R / I}(t)=\frac{g(t)}{(1-t)^{\operatorname{dim} R / I}}, \quad g(t) \in \mathbb{Z}[t], g(1) \neq 0
$$

Continuing our example

$$
\begin{aligned}
& r_{1}=3 \quad r_{2}=2 \\
& \bigcirc \quad \circ \\
& \mathcal{M}((3,2),\{\{1\},\{2\}\}) \\
& \begin{aligned}
I=< & X_{1,1} X_{2,2}-X_{1,2} X_{2,1}, \\
& X_{1,1} X_{3,2}-X_{1,2} X_{3,1} \\
& X_{2,1} X_{3,2}-X_{2,2} X_{3,1}>
\end{aligned} \\
& R=\mathbb{K}\left[X_{1,1}, X_{1,2}, \ldots, X_{3,2}\right] . \\
& H_{R / I}(t)=\sum_{d \in \mathbb{Z}^{+}} \operatorname{dim}_{\mathbb{K}}[R / I]_{d} \cdot t^{d}=1+6 t+18 t^{2}+40 t^{3}+\ldots \\
& \mathrm{H}_{R / I}(t)=\frac{1+2 t}{(1-t)^{4}} \\
& \mathcal{M}\left(\left(r_{1}, r_{2}\right),\{\{1\},\{2\}\}\right) \\
& H_{R_{\mathbf{r}} / I_{\mathbf{r}}}(t)=?
\end{aligned}
$$

Running example

$$
\mathrm{H}_{R_{\mathbf{r}} / \mathrm{I}_{\mathbf{r}}}(t)=\frac{\sum_{i=0}^{r_{1}-1}\binom{r_{1}-1}{i}\binom{r_{2}-1}{i} t^{i}}{(1-t)^{r_{1}+r_{2}-1}}
$$

Conca-Herzog, 1994

There exists recursive formulas
but not closed formulas

What about more complicated models?

equvariant Hilbert series

Fix Δ and consider $\mathscr{I}_{\Delta}=\left\{I_{\mathbf{r}}\right\}_{\mathbf{r} \in \mathbb{N}}^{m}$, where $I_{\mathbf{r}} \subset R_{\mathbf{r}}$ is the ideal for the model $\mathcal{M}(\mathbf{r}, \Delta)$. The equivariant Hilbert series for \mathscr{I}_{Δ} is the formal power series

$$
\operatorname{equivH}_{\mathscr{I}_{\Delta}}(t, \mathbf{s})=\sum_{r_{i} \geq 1} H_{R_{\mathbf{r} / I \mathbf{r}}}(t) \mathbf{s}^{\mathbf{r}}
$$

$$
\text { Note: } \mathbf{s}^{\mathbf{r}}=s_{1}^{r_{1}} s_{2}^{r_{2}} \ldots s_{m}^{r_{m}}
$$

Theorem (M-Nagel, 2018)

$\Delta=\{\{1\},\{2\}, \ldots,\{m\}\}$ induces $\mathscr{I}_{\Delta}=\left\{I_{\mathbf{r}}\right\}_{\mathbf{r} \in \mathbb{N}^{m}}$ with

$$
\text { equivH }_{\mathscr{I}_{\Delta}}\left(t, s_{1} \ldots s_{m}\right)=1+\frac{s_{1} s_{2} \ldots s_{m}}{\left(1-s_{1}\right)\left(1-s_{2}\right) \ldots\left(1-s_{m}\right)-t}
$$

$\stackrel{r_{1}}{r_{1}} \quad \stackrel{c}{\bullet} \quad$ equivH $\left(\mathrm{t}, \mathrm{s}_{1}\right)=\sum_{\mathrm{r}_{1} \geq 1}\left[\frac{1}{(1-\mathrm{t})^{\mathrm{cr}_{1}}}\right] \mathrm{s}_{1}^{\mathrm{r}_{1}}=\frac{(1-\mathrm{t})^{\mathrm{c}}}{(1-\mathrm{t})^{\mathrm{c}}-\mathrm{s}}$

Theorem (Nagel-Römer, 2015)

Let $\mathscr{I}=\left\{I_{n} \subset R_{n}\right\}_{n \in \mathbb{N}}$, where $R_{n}=\mathbb{K}\left[X_{i, j} \mid 1 \leq i \leq c, 1 \leq j \in n\right]$, is an Inc-invariant filtration of ideals. Then

$$
\operatorname{equivH}_{\mathscr{I}}(\mathrm{t}, \mathrm{~s})=\sum_{\mathrm{n} \geq 1} \mathrm{H}_{\mathrm{R}_{\mathrm{n}} / \mathrm{I}_{\mathrm{n}}}(\mathrm{t}) \cdot \mathrm{s}^{\mathrm{n}}
$$

is a rational function.

Corollary

Let Δ be any simplicial complex and $\mathscr{I}_{\Delta}=\left\{I_{r}\right\}_{r \in \mathbb{N}}$ a family of ideals arising from $\mathcal{M}(\mathbf{r}, \Delta)$ where \mathbf{r} has all but one component fixed. Then equivH $\mathscr{\mathscr { I }}_{\Delta}(\mathrm{t}, \mathrm{s})$ is rational.

$\operatorname{equivH}\left(t, s_{1}, s_{2}\right)=\sum_{r_{1}, r_{2} \geq 1}\left(\frac{1}{(1-t)^{r_{1} r_{2}}}\right) s_{1}^{r_{1}} s_{2}^{r_{2}}=$ no rational presentation

Set $T=\left\{t \in[m] \mid r_{t} \in \mathbb{N}\right\}$. Given Δ and the fixed values $\left\{r_{i}, i \notin T\right\}$, one considers the family of ideals $\mathscr{I}_{\Delta, \mathbf{r}_{[m \backslash \backslash}}=\left\{I_{\mathbf{r}_{T}}\right\}_{r_{t} \in \mathbb{N}}$.

Under what conditions on Δ and T is equivH $\mathscr{\mathscr { A }}_{\Delta, \mathrm{r}_{[\mathrm{m}] \backslash \mathrm{T}}}(\mathrm{t}, \mathrm{s})$ rational?

Theorem (M-Nagel, 2018)

The equivariant Hilbert series for $\mathscr{I}_{\Delta, \mathbf{r}_{[m] \backslash T}}$ is rational if
(1) $F_{i} \cap F_{j}=\emptyset$ for any $F_{i}, F_{j} \in \Delta$.
(2) $|F \cap T| \leq 1$ for any $F \in \Delta$.

Sketch of the proof:

(1) Reduce the problem to Δ being a graph.
(2) Study $H_{\operatorname{im}\left(\phi_{\mathbf{r}}\right)}(t)$, where $\operatorname{im}\left(\phi_{\mathbf{r}}\right)$ is an algebra over \mathbb{K} generated by $\phi_{\mathbf{r}}\left(x_{\mathbf{i}}\right)$, for all $\mathbf{i} \in\left[r_{1}\right] \times\left[r_{2}\right] \times \cdots \times\left[r_{m}\right]$.
(3) Determine a regular language \mathcal{L} and a weight function ρ such that

$$
P_{\mathcal{L}, \rho}(t, \mathbf{s})=\text { equivH }_{\mathscr{I}_{\Delta, \mathbf{r}[\mathbf{m}] \backslash \mathrm{T}}}(\mathrm{t}, \mathbf{s})
$$

(1) Theorem [Honkala, 1989]: Let \mathcal{L} be a regular language and let ρ be a weight function on \mathcal{L}. Then the power series

$$
H_{\mathcal{L}, \rho}=\sum_{w \in \mathcal{L}} \rho(w)
$$

is a rational function.

References:

(1) E. Belay, J. Bresee and +4 , Reye's Syndrome in the United States from 1981 through 1997, The New Eng. J. of Med. 340 (1999), 1377-1382.
(2) A. Conca, J. Herzog, On the Hilbert function of determinantal rings and their canonical module, Proc. Amer. Math. Soc. 112 (1994), 677-681.
(3) P. Diaconis, B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist. 26(1) (1998), 363-397.
(1) J. Honkala, A necessary condition for the rationality of the zeta function of a regular language, Theor. Comput. Sci. 66 (3) (1989), 341-347.
(6) C. Hillar, S. Sullivant, Finite Grobner bases in infinite dimensional polynomial rings and applications, Adv. Math. 229 (1998), 1-25.
(6) R. Krone, A. Lynkyn, A. Snowden, Hilbert series of symmetric ideals in infinite polynomial rings via formal languages Regular languages, J. of Alg. 485 (2015), 353-362.
© U. Nagel, T. Römer, Equivariant Hilbert series in non-Noetherian polynomial rings, J. Algebra 486 (2015), 204â-245.
(8) S. Sullivant, Algebraic Statistics, 194 American Mathematical Society, Providence, RI (2018).

Thank you!

