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Algebraic Statistics Dictionary

Probability/Statistics Algebra/Geometry

Probability distribution Point

Statistical model (Semi) Algebraic set

Discrete exponential family Toric variety

Conditional interference Lattice points in polytopes

Maximum likelihood estima-
tion

Polynomial optimization

Model selection Geometry of singularities

Multivariate Gaussian model Spectral geometry

Phylogenetic model Tensor networks

MAP estimates Tropical geometry

From Alg. Stat. book of S. Sullivant
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Statistical Models
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Part 1

Hierarchical Models
– record the dependency relationships of random variables
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Applications

Question: Among patients with Reye’s syndrome, is there any relation
between the type of infection and the use of Aspirin to treat that
infection?
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Running Example

Ω1 = {Varicella, Influenza, Gastroenteritis} r1 = 3

Ω2 = {Use Aspirin reg., Don’t use Aspirin reg.} r2 = 2

(Z1, Z2) ∈ Ω1 × Ω2

P (Z1 = i, Z2 = j) = pi,j

P = {(pi,j) | (i, j) ∈ Ω1 × Ω2,
∑
i,j
pi,j = 1}

M1 = {(pi,j) ∈ P | pi,j = pi,� · p�,j , for all (i, j) ∈ Ω1 × Ω2}

M2 = P/M1
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Running Example

Visualizations of the Models

M1 = {(pi,j) | pi,j = pi,� · p�,j} M2 = P/M1
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Analyzing Data

Ω1 = {Varicella, Influenza, Gastroenteritis} r1 = 3

Ω2 = {Use Aspirin reg., Don’t use Aspirin reg.} r2 = 2

Ω3 = {children, teenagers} r3 = 2

Choose the model that best fits the data.
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Hierarchical Models

Definition

A hierarchical model M on m randon variables consists of

1 a vector r = (r1, r2, · · · , rm), where each ri denotes the number of
states for the variable Zi.

2 a collection ∆ = {F1, F2, · · · , Fn}, where each Fj ⊂ [m] in the
collection encodes a maximal non independent relation among the
parameters indicated in it.

M(r,∆) =

(pi1...im) | pi1,...,im =
∏
F2∆

piF for all (i1 . . . im) ∈
∏
k2[m]

[rk]


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How to choose the right model?
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Part 2

Ideals of Hierarchical Models in
Algebra
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Constructing the Ideal

K[X111, X112 . . . X322]
φ−→ K[Y11 . . . Y32, Z11 . . . Z32],

Xijk 7−→ Yij · Zik

I = ker(φ) is the ideal for M.

I =< X111X122 −X112X121,

X211X222 −X212X221,

X311X322 −X312X321 >
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General Construction

Let M(r,∆) be a hierarchical model.

K[Xi1...im |(i1, . . . im) ∈
∏
i2[m]

[ri]]
φ−→ K[YF,jF |F ∈ ∆, jF ∈

∏
i2F

[ri]],

Xi 7−→
∏
F2∆

YF,iF

Note: [ri] = {1, 2, . . . , ri}

I = ker(φ) is the ideal for M.

I =< {xu − xv} >
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Fundamental Theorem of Markov Bases
[Diaconis-Sturmfels, 1998]

A subset β ⊂ kerZA is a Markov Basis for M if and only if the
corresponding set of binomials {xb+ − xb

− | b = b+ − b� ∈ β} generates
the ideal I.
Note: b+ and b� are respectively positive and negative part of the
vector b.
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Part 3

Quantitative Properties of the Ideals
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Let R be a graded polynomial ring in finitely many variables over a
field K and I a homogeneous ideal in R.

R/I = [R/I]0 ⊕ [R/I]1 ⊕ · · · ⊕ [R/I]d ⊕ . . .

where [R/I]d = {all homogeneous polynomials of degree d in R/I}

HR/I(t) =
∑
d�0

dimK[R/I]d · td

Hilbert series are rational of the form

HR/I(t) =
g(t)

(1− t)dimR/I
, g(t) ∈ Z[t], g(1) 6= 0.
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Continuing our example

I =< X1,1X2,2 −X1,2X2,1,
X1,1X3,2 −X1,2X3,1,
X2,1X3,2 −X2,2X3,1 >

R = K[X1,1, X1,2, . . . , X3,2].

HR/I(t) =
∑
d2Z+

dimK[R/I]d · td = 1 + 6t+ 18t2 + 40t3 + . . .

HR/I(t) =
1 + 2t

(1− t)4

HRr/Ir(t) =?
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Running example

HRr/Ir(t) =

r1�1∑
i=0

(
r1�1
i

)(
r2�1
i

)
ti

(1− t)r1+r2�1

Conca–Herzog, 1994

HRr1,r2,r3/Ir1,r2
(t) =

r1�1∑
i=0

(
r1�1
i

)(
r2�1
i

)
ti

(1− t)r1+r2�1

There exists recursive formulas

but not closed formulas

What about more complicated models?
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equvariant Hilbert series

Fix ∆ and consider I∆ = {Ir}mr2N, where Ir ⊂ Rr is the ideal for the
model M(r,∆). The equivariant Hilbert series for I∆ is the formal
power series

equivHI∆
(t, s) =

∑
ri�1

HRr/Ir
(t)sr

Note: sr = sr11 s
r2
2 . . . srmm

Theorem (M-Nagel, 2018)

∆ = {{1}, {2}, . . . , {m}} induces I∆ = {Ir}r2Nm with

equivHI∆
(t, s1 . . . sm) = 1 +

s1s2 . . . sm
(1− s1)(1− s2) . . . (1− sm)− t

Theorem (Nagel-Romer, 2015)

Let I = {In ⊂ Rn}n2N, where Rn = K[Xi,j | 1 ≤ i ≤ c, 1 ≤ j ∈ n], is
an Inc-invariant �ltration of ideals. Then

equivHI (t, s) =
∑
n�1

HRn/In(t) · sn

is a rational function.
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equivH(t, s1) =
∑
r1�1

[
1

(1− t)cr1
]sr1

1 =
(1− t)c

(1− t)c − s

Theorem (Nagel-Römer, 2015)

Let I = {In ⊂ Rn}n2N, where Rn = K[Xi,j | 1 ≤ i ≤ c, 1 ≤ j ∈ n], is
an Inc-invariant �ltration of ideals. Then

equivHI (t, s) =
∑
n�1

HRn/In(t) · sn

is a rational function.

Corollary

Let ∆ be any simplicial complex and I∆ = {Ir}r2N a family of ideals
arising from M(r,∆) where r has all but one component �xed. Then
equivHI∆

(t, s) is rational.

Note: sr = sr11 s
r2
2 . . . srmm
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equivH(t, s1, s2) =
∑

r1,r2�1

(
1

(1− t)r1r2
)sr1

1 sr2
2 = no rational presentation

Set T = {t ∈ [m] | rt ∈ N}. Given ∆ and the fixed values {ri, i /∈ T},
one considers the family of ideals I∆,r[m]\T = {IrT }rt2N.

Under what conditions on ∆ and T is equivHI∆,r[m]\T
(t, s) rational?

Theorem (M-Nagel, 2018)

The equivariant Hilbert series for I∆,r[m]\T is rational if

1 Fi ∩ Fj = ∅ for any Fi, Fj ∈ ∆.

2 |F ∩ T | ≤ 1 for any F ∈ ∆.
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Sketch of the proof:

1 Reduce the problem to ∆ being a graph.

2 Study Him(φr)(t), where im(φr) is an algebra over K generated by
φr(xi), for all i ∈ [r1]× [r2]× · · · × [rm].

3 Determine a regular language L and a weight function ρ such that

PL,ρ(t, s) = equivHI∆,r[m]\T
(t, s)

4 Theorem [Honkala, 1989]: Let L be a regular language and let ρ
be a weight function on L. Then the power series

HL,ρ =
∑
w2L

ρ(w)

is a rational function.
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Thank you!
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