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Genesis, Chapter 13

From the Negev Abram went from place to place until he came to
Bethel, to the place between Bethel and Ai where his tent had
been earlier and where he had first built an altar. There
Abram called on the name of the Lord.

Now Lot, who was moving about with Abram, also had flocks and
herds and tents. But the land could not support them while
they stayed together, for their possessions were so great that
they were not able to stay together. And quarreling arose
between Abram’s herders and Lot’s. The Canaanites and
Perizzites were also living in the land at that time.

So Abram said to Lot, “Let’s not have any quarreling between
you and me, or between your herders and mine, for we are
close relatives. Is not the whole land before you? Let’s part
company. If you go to the left, I'll go to the right; if you go to
the right, I'll go to the left.”



Dividing a cake

Theorem (Abraham, 1850 BC)

To divide a cake between two people in an envy-free manner,
let one person cut the cake and let the other choose.



Envy-free cake cutting: the
traditional setting



Envy-free cake sharing

A cake has to be shared between people.
It will be divided into as many pieces as there are people.
Each person will be assigned a piece.

Envy-free sharing of a cake: each person prefers his piece.



Envy-free cake sharing

A cake has to be shared between people.
It will be divided into as many pieces as there are people.
Each person will be assigned a piece.

Envy-free sharing of a cake: each person is at least as happy
with his piece than with any other piece.



Model

nplayers:i=1,...,n

Cake: [0,1] = | I
0 1
Division of the cake: partition Z of [0, 1] into pairwise disjoint

nonempty intervals, called pieces. (& Assumption: boundary points do not
matter)

Player i has a preference function:
pi: {divisions} — 2{Pieces}

Meaning: Given a division Z, player i is happy with the pieces | € T such that | € p;(T).

Envy-free sharing: division Z and assignment
m: {players} — {pieces} such that

* 7 is bijective.
* m(i) € pi(Z) for every player i.



Example with 2 players
2 players: Alice and Bob

Cake: [0,1] =

|

I

0 1
Example

ux(l) = /Ifx(u)du px(Z) = argmax{ux(/): I € I}.

with £, = \ = /

Sharing: w(A)=h,n(B) =k




Example with 3 players
3 players: Alice, Bob, and

Example

pux(l) = /Ifx(u)du px(Z) = argmax{ux(/): I € 7},

Sharing: m(A) = h, m(B) = b, 7(C) = k.




Existence of envy-free divisions

Preference function p; is closed if
kILmOOIk =7 and K e pi(ZTF) Yk = I®cpi(T)
Preference function p; is hungry if
lepi(ZT) = XI)#0

Theorem (Stromquist, Woodall, 1980)

No matter how many players there are, when all preference

functions are closed and hungry, there is always an envy-free
sharing.



Constructive proof

Su (1998) proposed an elegant proof based on Sperner’s
lemma.

= algorithmic proof (path-following, pivot) for finding an
approximate envy-free sharing.

Space of division:

An-1 ={(X1,.... %) ERT: 0 x;=1}
Vaval
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|
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Sperner’s lemma



Focus on Su’s proof

Three players: A,B,C.

Ask each player which piece she prefers.



Focus on Su’s proof

Three players: A,B,C.

Ask each player which piece she prefers.



Focus on Su’s proof
Three players: A,B,C.

pi’s are hungry =— Sperner’s lemma: There is an approximate
envy-free sharing.



Focus on Su’s proof
Three players: A,B,C.

Compactness and p;’s are closed: There is an envy-free
sharing.



Wine

Other things than lands and cakes can be shared.

. N\



Complexity remarks
Three theorems by Deng, Qi, and Saberi (2012).

Theorem

Finding an e-approximation of an envy-free sharing of the cake
is PPAD-complete.

Theorem
The query complexity of finding an e-approximation is

0((1/e)"1).

Theorem

If the preference functions are Lipschitz and monotone, then
there is an FPTAS for the case with n = 3 players.

The case n > 3 remains open.



The poisoned case



Preference functions can model more

Player i’s preference function: p;: {divisions} — 2{pieces}
Given a division Z, player i is happy with the pieces / such that

I € pi(Z).

It is very flexible: no monotonicity assumption, can make the
preferences depend on all pieces, etc.

Other example:

ux(l) = /lfx(u)du px(Z) = { ng i) fe 2} ic];t|hzelrv:vige.

Can be used to model burnt or poisoned cake.



More general model
nplayers:i=1,...,n

Cake: [0,1] = | I
0 1
Division of the cake: partition Z of [0, 1] into pairwise disjoint

nonempty intervals, called pieces. (& Assumption: boundary points do not
matter)

Player i has a preference function: p;: {divisions} — 2{Piecesiu{a}
Meaning: Given a division Z, player i is happy

o either with the pieces | € T such that | € p;j(T),

e orwith@.

Envy-free sharing: division Z and assignment
m: {players} — {pieces} U {@} such that
* For every piece /, there exists a unique player i s.t. 7(i) =/
(“bijectivity”)
* 7(i) € pi(Z) for every player i.



A more general theorem
Preference function p; is closed if

im 7K =7 and ¥ e pj(ZF) Yk = I~ e pi(2)

k—o00

Full-division assumption: when the cake is divided into n
pieces, no player is happy to get nothing.

Theorem (M., Zerbib 2019)

Consider an instance with n players, with closed preference
functions and the full-division assumption. If n is a prime
number or is equal to 4, then there exists an envy-free division
of the cake.

Conjectured by Segal-Halevi (2018) to be true for all n.



Casesn=1,2,3

Case n =1 is obvious

Casen=2: Aand B
* there is a division into two nonempty intervals between
which A is indifferent:

o start in the middle
o move in each direction: the limit division is the same in

both cases
o use continuity to conclude

* A cuts, B chooses

Case n = 3, proved by Segal-Halevi (2018).



Proof of the theorem

If 3 is a preferred piece in a division
(X1, X2, X3, X4, X5) = (0, a, b,0, ¢),

|
|
|

then 4 is a preferred piece in the
division
(X1 , X2, X3, X4, X5) = (av Oa 07 b> C)'

= “Sperner’s lemma” with a
/ symmetry on the boundary
\ proved by Segal-Halevi (2018) for

n=3.




Sperner’s lemma with a symmetry

A
Y

Theorem

Let T be a nice triangulation of A"~ and let A be a nice
labeling of its vertices with nonempty proper subsets of [n]. If n
is a prime number, then there is an (n — 1)-dimensional simplex
T € T such that it is possible to pick a distinct label in each \(u)
when u runs over the vertices of T.

Triangulation T and labeling A are
nice if A(F(v)) = p/(A(v)) or every
J € [n] and every vertex v of the
1-facet.




Use of “Sperner’s lemma with symmetry”

AX) = {pieces preferred by x} if player prefers to have a piece
| {ie[n]: x;=0} otherwise.

Full-division assumption: every vertex gets a label

Sperner’s lemma with symmetry + (compactness and p;’s are
closed): there exists an envy-free sharing



Proof of “Sperner’s lemma with symmetry”

/
Javavav

T=Tu (U,L Cj)

Lemma (M., Zerbib 2019)

Let \ be a labeling of a triangulation K of A", If \(v) belongs
to the supporting face of v for all vertices v, then

-----



Proof of “Sperner’s lemma with symmetry”

(t= S det(\(w)..... \(va)
[Vi,e..,vn] €T/
n
t=t+3 ¢ with { = > det(A(v)... Avn)
= [Viyes V] €T
Cj = Z det(A(V1),-~-,)\(Vn))
L [V1 ..... Vn]EC/

Symmetry = >~ ¢; = nc

A(v) is of the form s 3 AY) where X7 =

1 ifieS
0 otherwise.

A generalization of Sperner’s lemma = |t'| = 1

nprime =t #0



Remarks

Case n nonprime and # 4 is still open.

If goods have to be shared, true for all n: classical
cake-division theorem. If chores have to be shared, true for all
n: rental-harmony theorem. Mixing makes the problem difficult.

“Sperner’s lemma with symmetry” looks like a combinatorial
fixed-point theorem for higher dimensional generalizations of
the dunce hat space. Other applications? Nice interpretation?

Research activity on discrete versions of cake-divisions.



Thank you.



