Hypersimplicial Subdivisions

Jorge Alberto Olarte

June 18, 2019

Joint work with Francisco Santos

Freie Universität

Induced subdivisions

Definition

Let $\pi: P \rightarrow Q$ a linear surjective projection between two polytopes $P \subset \mathbb{R}^{n}$ and $Q \subset \mathbb{R}^{d}$. A π-induced subdivision S of Q is a polyhedral subdivision such that for every cell $\sigma \in S$ there is a face F of P such that $\pi(F)=\sigma$.

Let A be the image under π of the standard basis.

- When $P=\Delta_{n}$ is the standard simplex, π-induced subdivisions are just all subdivision on A.
- When $P=[0,1]^{n}$ is the unit cube, π-induced subdivisions are zonotopal tilings of the zonotope $Z(A)$.
- What if P is a hypersimplex?

Hypersimplicial subdivisions

Let $\Delta_{n}^{(k)}:=[0,1]^{n} \cap\left\{\sum_{i=1}^{n} x_{i}=k\right\}$ be a hypersimplex and let $A^{(k)}$ be the image of the vertices of $\Delta_{n}^{(k)}$ under π.

Definition

A hypersimplicial subdivision of $A^{(k)}$ is a π-induced subdivision for $\pi: \Delta_{n}^{(k)} \rightarrow \operatorname{conv} A^{(k)}$.

Hypersimplicial subdivisions

Let $\Delta_{n}^{(k)}:=[0,1]^{n} \cap\left\{\sum_{i=1}^{n} x_{i}=k\right\}$ be a hypersimplex and let $A^{(k)}$ be the image of the vertices of $\Delta_{n}^{(k)}$ under π.

Definition

A hypersimplicial subdivision of $A^{(k)}$ is a π-induced subdivision for $\pi: \Delta_{n}^{(k)} \rightarrow \operatorname{conv} A^{(k)}$.

The main motivation to study them is that when A is the set of vertices of a convex polygon, hypersimplicial subdivisions are in bijection with plabic graphs (Galashin 2018).

Relationship with zonotopal tilings

. 12345

Picture taken from Flip cycles in plabic graphs by Alexey Balitskiy and Julian Wellman, redrawn from Plabic graphs and to zonotopal tilings by Galashin.

Regular subdivisions

Given a height function $h: A \rightarrow \mathbb{R}$, the lower faces of $\operatorname{conv}\left(\left\{(a, h(v)) \in \mathbb{R}^{n+1} \mid a \in A\right\}\right)$ project onto $\operatorname{conv}(A)$ to form a polyhedral subdivision $\operatorname{Sub}_{h}(A)$. Such subdivisions are called regular. This procedure partitions \mathbb{R}^{n} in a fan called the secondary fan of A, where two vectors are in the same (relatively open) cone if and only if they produce the same subdivision. This fan is the normal fan of a polytope $\mathcal{F}(A)$ called the secondary polytope.

Example: the associahedron.

If A is the set of vertices of a convex polygon, the secondary polytope is called the associahedron.

Picture taken from the book Triangulations: Structures for Algorithms and Applications by De Loera, Rambau and Santos

Coherent subdivisions and fiber polytopes

Coherent subdivisions generalize regular subdivisions.

Definition

Consider a polytope $P \subset \mathbb{R}^{n}$ and a projection $\pi: P \rightarrow Q$. Let $w: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a linear function. For each point $q \in Q$, the fiber $f^{-1}(q)$ is a polytope inside P. The function w is minimized in some face F_{q} of P. The π-coherent subdivision given by w consists of $\left\{\pi\left(F_{q}\right) \mid q \in Q\right\}$.

The equivalence clases of \mathbb{R}^{n} according to which π-coherent subdivisions they produce are the cones of the normal fan of a polytope $\mathcal{F}(P \xrightarrow{\pi} Q)$ called the fiber polytope.

- When $P=\Delta_{n}$, the fiber polytope $\mathcal{F}\left(\Delta_{n} \xrightarrow{\pi} \operatorname{conv}(A)\right)$ is the secondary polytope of A.
- When $P=[0,1]^{n}$, the fiber polytope $\mathcal{F}\left([0,1]^{n} \xrightarrow{\pi} Z(A)\right)$ is called the secondary zonotope of $Z(A)$.
- When $P=\Delta_{n}^{(k)}$, we call the fiber polytope $\mathcal{F}\left(\Delta_{n}^{(k)} \xrightarrow{\pi} \operatorname{conv}\left(A^{(k)}\right)\right)$ the hypersecondary polytope.

Example: non coherent subdivision.

Not all hypersimplicial subdivisions are coherent:

Hyperasecondary polytopes

Recall the following:

- The Minkowski sum of $A, B \subset \mathbb{R}^{n}$ is $A+B:=\{a+b \mid a \in A b \in B\}$.
- Two polytopes P and P^{\prime} are said to be normally equivalent if their normal fans are the same.

Theorem (O.-Santos)

Let $A \subseteq \mathbb{R}^{d}$ be a configuration of size n and $1 \leq k \leq d+1$. Let $s=\max (n-k+1, d+2)$. The hypersecondary polytope $\mathcal{F}\left(\Delta_{n}^{(k)} \xrightarrow{\pi} A^{(k)}\right)$ is normally equivalent to the Minkowski sum of the secondary polytopes of all subsets of A of size s.

Example: the hyperassociahedron.

The associahedron $\mathcal{F}\left(\Delta_{6} \xrightarrow{\pi} P_{6}\right)$.
The second hyperassociahedron

$$
\mathcal{F}\left(\Delta_{6}^{(2)} \xrightarrow{\pi} P_{6}^{(2)}\right) .
$$

Baues poset

Non trivial π-induced subdivisions form a poset, where the order is given by refinement. This is called the Baues poset $\mathcal{B}(P \xrightarrow{\pi} Q)$.

Given a poset \mathcal{P}, the chain complex $C(\mathcal{P})$ of \mathcal{P} is a simplicial complex where the vertices of $C(\mathcal{P})$ are the elements of \mathcal{P} and the simplices are given by chains of \mathcal{P}. The topology of \mathcal{P} is the topology of $C(\mathcal{P})$.

Example

Consider the subposet of $\mathcal{B}(P \xrightarrow{\pi} Q)$ consisting of the coherent subdivisions. The chain complex of this poset is the baricentric subdivision of $\mathcal{F}(P \xrightarrow{\pi} Q)$. In particular it has the topology of a sphere.

Generalized Baues Problem

Problem

For which $\pi: P \rightarrow Q$ does the Baues poset $\mathcal{B}(P \xrightarrow{\pi} Q)$ retract onto the poset of coherent subdivisions?

Generalized Baues Problem

Problem

For which $\pi: P \rightarrow Q$ does the Baues poset $\mathcal{B}(P \xrightarrow{\pi} Q)$ retract onto the poset of coherent subdivisions?

- Not true in general. First counterexample by Ramubau-Ziegler 1996. There are further counterexamples with $P=\Delta_{n}$ (Santos 2006) and with $P=[0,1]^{n}$ (Liu 2016).

Generalized Baues Problem

Problem

For which $\pi: P \rightarrow Q$ does the Baues poset $\mathcal{B}(P \xrightarrow{\pi} Q)$ retract onto the poset of coherent subdivisions?

- Not true in general. First counterexample by Ramubau-Ziegler 1996. There are further counterexamples with $P=\Delta_{n}$ (Santos 2006) and with $P=[0,1]^{n}$ (Liu 2016).
- True for $P=\Delta_{n}$ and Q a cyclic polytope (Rambau-Santos 2000) and for $P=[0,1]^{n}$ and Q a cyclic zonotope (Sturmfels-Ziegler 1993).

Generalized Baues Problem

Problem

For which $\pi: P \rightarrow Q$ does the Baues poset $\mathcal{B}(P \xrightarrow{\pi} Q)$ retract onto the poset of coherent subdivisions?

- Not true in general. First counterexample by Ramubau-Ziegler 1996. There are further counterexamples with $P=\Delta_{n}$ (Santos 2006) and with $P=[0,1]^{n}$ (Liu 2016).
- True for $P=\Delta_{n}$ and Q a cyclic polytope (Rambau-Santos 2000) and for $P=[0,1]^{n}$ and Q a cyclic zonotope (Sturmfels-Ziegler 1993).
- OPEN: What about $\Delta_{n}^{(k)} \rightarrow A^{(k)}$ where A is the set of vertices of any cyclic polytope? (Postnikov 2018).

Generalized Baues Problem

Problem

For which $\pi: P \rightarrow Q$ does the Baues poset $\mathcal{B}(P \xrightarrow{\pi} Q)$ retract onto the poset of coherent subdivisions?

- Not true in general. First counterexample by Ramubau-Ziegler 1996. There are further counterexamples with $P=\Delta_{n}($ Santos 2006$)$ and with $P=[0,1]^{n}$ (Liu 2016).
- True for $P=\Delta_{n}$ and Q a cyclic polytope (Rambau-Santos 2000) and for $P=[0,1]^{n}$ and Q a cyclic zonotope (Sturmfels-Ziegler 1993).
- OPEN: What about $\Delta_{n}^{(k)} \rightarrow A^{(k)}$ where A is the set of vertices of any cyclic polytope? (Postnikov 2018).

Theorem (O.-Santos 2019+)

Let A be the vertices of a convex polygon. Then the Baues poset $\mathcal{B}\left(\Delta_{n}^{(k)} \xrightarrow{\pi} A^{(k)}\right)$ retracts onto the poset of coherent subdivisions. In particular, it has the homotopy of an $n-4$-sphere.

Merci beaucoup!

Hypersimplisical subdivisions, O.-Santos arXiv:1906.05764

