Hypersimplicial Subdivisions

Jorge Alberto Olarte

June 18, 2019

Joint work with Francisco Santos

Image: A math the second se

Induced subdivisions

Definition

Let $\pi: P \to Q$ a linear surjective projection between two polytopes $P \subset \mathbb{R}^n$ and $Q \subset \mathbb{R}^d$. A π -induced subdivision S of Q is a polyhedral subdivision such that for every cell $\sigma \in S$ there is a face F of P such that $\pi(F) = \sigma$.

Let A be the image under π of the standard basis.

- When P = Δ_n is the standard simplex, π-induced subdivisions are just all subdivision on A.
- When P = [0,1]ⁿ is the unit cube, π-induced subdivisions are zonotopal tilings of the zonotope Z(A).
- What if *P* is a hypersimplex?

Let
$$\Delta_n^{(k)} := [0,1]^n \cap \left\{ \sum_{i=1}^n x_i = k \right\}$$
 be a hypersimplex and let $\mathcal{A}^{(k)}$ be the image of the vertices of $\Delta_n^{(k)}$ under π .

Definition

A hypersimplicial subdivision of $A^{(k)}$ is a π -induced subdivision for $\pi : \Delta_n^{(k)} \to \operatorname{conv} A^{(k)}$.

イロト イヨト イヨト イヨト

Let
$$\Delta_n^{(k)} := [0,1]^n \cap \left\{ \sum_{i=1}^n x_i = k \right\}$$
 be a hypersimplex and let $\mathcal{A}^{(k)}$ be the image of the vertices of $\Delta_n^{(k)}$ under π .

Definition

A hypersimplicial subdivision of $A^{(k)}$ is a π -induced subdivision for $\pi : \Delta_n^{(k)} \to \operatorname{conv} A^{(k)}$.

The main motivation to study them is that when A is the set of vertices of a convex polygon, hypersimplicial subdivisions are in bijection with plabic graphs (Galashin 2018).

< □ > < 同 > < 回 > < Ξ > < Ξ

Relationship with zonotopal tilings

12345

Picture taken from *Flip cycles in plabic graphs* by Alexey Balitskiy and Julian Wellman, redrawn from *Plabic graphs and to zonotopal tilings* by Galashin. $\square + \langle \square + \langle \ge + \langle \ge + \rangle \ge \langle \ge + \rangle \ge \langle \ge + \langle \ge + | \ge + | \ge | \ge | \ge |$

Jorge Alberto Olarte

Hypersimplicial Subdivisions

June 18, 2019 4 / 13

Given a height function $h : A \to \mathbb{R}$, the lower faces of conv({ $(a, h(v)) \in \mathbb{R}^{n+1} | a \in A$ }) project onto conv(A) to form a polyhedral subdivision Sub_h(A). Such subdivisions are called *regular*. This procedure partitions \mathbb{R}^n in a fan called the *secondary fan* of A, where two vectors are in the same (relatively open) cone if and only if they produce the same subdivision. This fan is the normal fan of a polytope $\mathcal{F}(A)$ called the secondary polytope.

Example: the associahedron.

If A is the set of vertices of a convex polygon, the secondary polytope is called the associahedron.

Picture taken from the book *Triangulations: Structures for Algorithms and Applications* by De Loera, Rambau and Santos

Jorge Alberto Olarte

Coherent subdivisions and fiber polytopes

Coherent subdivisions generalize regular subdivisions.

Definition

Consider a polytope $P \subset \mathbb{R}^n$ and a projection $\pi : P \to Q$. Let $w : \mathbb{R}^n \to \mathbb{R}$ be a linear function. For each point $q \in Q$, the fiber $f^{-1}(q)$ is a polytope inside P. The function w is minimized in some face F_q of P. The π -coherent subdivision given by w consists of $\{\pi(F_q) \mid q \in Q\}$.

The equivalence clases of \mathbb{R}^n according to which π -coherent subdivisions they produce are the cones of the normal fan of a polytope $\mathcal{F}(P \xrightarrow{\pi} Q)$ called the *fiber polytope*.

- When $P = \Delta_n$, the fiber polytope $\mathcal{F}(\Delta_n \xrightarrow{\pi} \operatorname{conv}(A))$ is the secondary polytope of A.
- When P = [0, 1]ⁿ, the fiber polytope F([0, 1]ⁿ → Z(A)) is called the secondary zonotope of Z(A).
- When P = Δ_n^(k), we call the fiber polytope F(Δ_n^(k) → conv(A^(k))) the hypersecondary polytope.

イロト イヨト イヨト イヨト

Example: non coherent subdivision.

Not all hypersimplicial subdivisions are coherent:

・ロト ・回 ト ・ ヨト ・

Recall the following:

- The Minkowski sum of $A, B \subset \mathbb{R}^n$ is $A + B := \{a + b \mid a \in A \ b \in B\}$.
- Two polytopes *P* and *P'* are said to be *normally equivalent* if their normal fans are the same.

Theorem (O.-Santos)

Let $A \subseteq \mathbb{R}^d$ be a configuration of size n and $1 \leq k \leq d+1$. Let $s = \max(n - k + 1, d + 2)$. The hypersecondary polytope $\mathcal{F}(\Delta_n^{(k)} \xrightarrow{\pi} A^{(k)})$ is normally equivalent to the Minkowski sum of the secondary polytopes of all subsets of A of size s.

< □ > < 同 > < 回 > < Ξ > < Ξ

Example: the hyperassociahedron.

The associahedron $\mathcal{F}(\Delta_6 \xrightarrow{\pi} P_6)$.

The second hyperassociahedron $\mathcal{F}(\Delta_6^{(2)} \xrightarrow{\pi} P_6^{(2)}).$

イロト イヨト イヨト イヨト

Non trivial π -induced subdivisions form a poset, where the order is given by refinement. This is called the *Baues poset* $\mathcal{B}(P \xrightarrow{\pi} Q)$.

Given a poset \mathcal{P} , the *chain complex* $C(\mathcal{P})$ of \mathcal{P} is a simplicial complex where the vertices of $C(\mathcal{P})$ are the elements of \mathcal{P} and the simplices are given by chains of \mathcal{P} . The topology of \mathcal{P} is the topology of $C(\mathcal{P})$.

Example

Consider the subposet of $\mathcal{B}(P \xrightarrow{\pi} Q)$ consisting of the **coherent** subdivisions. The chain complex of this poset is the baricentric subdivision of $\mathcal{F}(P \xrightarrow{\pi} Q)$. In particular it has the topology of a sphere.

< □ > < □ > < □ > < □ > < □ >

For which $\pi: P \to Q$ does the Baues poset $\mathcal{B}(P \xrightarrow{\pi} Q)$ retract onto the poset of coherent subdivisions?

・ロト ・回 ト ・ ヨト ・

For which $\pi: P \to Q$ does the Baues poset $\mathcal{B}(P \xrightarrow{\pi} Q)$ retract onto the poset of coherent subdivisions?

Not true in general. First counterexample by Ramubau-Ziegler 1996. There are further counterexamples with P = Δ_n (Santos 2006) and with P = [0,1]ⁿ (Liu 2016).

A D F A A F F A

For which $\pi: P \to Q$ does the Baues poset $\mathcal{B}(P \xrightarrow{\pi} Q)$ retract onto the poset of coherent subdivisions?

- Not true in general. First counterexample by Ramubau-Ziegler 1996. There are further counterexamples with $P = \Delta_n$ (Santos 2006) and with $P = [0, 1]^n$ (Liu 2016).
- True for $P = \Delta_n$ and Q a cyclic polytope (Rambau-Santos 2000) and for $P = [0, 1]^n$ and Q a cyclic zonotope (Sturmfels-Ziegler 1993).

イロト イ団ト イヨト イヨ

For which $\pi: P \to Q$ does the Baues poset $\mathcal{B}(P \xrightarrow{\pi} Q)$ retract onto the poset of coherent subdivisions?

- Not true in general. First counterexample by Ramubau-Ziegler 1996. There are further counterexamples with $P = \Delta_n$ (Santos 2006) and with $P = [0, 1]^n$ (Liu 2016).
- True for $P = \Delta_n$ and Q a cyclic polytope (Rambau-Santos 2000) and for $P = [0, 1]^n$ and Q a cyclic zonotope (Sturmfels-Ziegler 1993).
- OPEN: What about $\Delta_n^{(k)} \to A^{(k)}$ where A is the set of vertices of any cyclic polytope? (Postnikov 2018).

イロト イ団ト イヨト イヨト

For which $\pi: P \to Q$ does the Baues poset $\mathcal{B}(P \xrightarrow{\pi} Q)$ retract onto the poset of coherent subdivisions?

- Not true in general. First counterexample by Ramubau-Ziegler 1996. There are further counterexamples with $P = \Delta_n$ (Santos 2006) and with $P = [0, 1]^n$ (Liu 2016).
- True for $P = \Delta_n$ and Q a cyclic polytope (Rambau-Santos 2000) and for $P = [0, 1]^n$ and Q a cyclic zonotope (Sturmfels-Ziegler 1993).
- OPEN: What about Δ^(k)_n → A^(k) where A is the set of vertices of any cyclic polytope? (Postnikov 2018).

Theorem (O.-Santos 2019+)

Let A be the vertices of a convex polygon. Then the Baues poset $\mathcal{B}(\Delta_n^{(k)} \xrightarrow{\pi} A^{(k)})$ retracts onto the poset of coherent subdivisions. In particular, it has the homotopy of an n - 4-sphere.

Merci beaucoup!

Hypersimplisical subdivisions, O.-Santos arXiv:1906.05764

Jorge Alberto Olarte