# Semi-Inverted Linear Spaces 

Georgy Scholten<br>North Carolina State University<br>ghscholt@ncsu.edu<br>June 21, 2019

## Construction of the variety

Let $\mathcal{L} \subset \mathbb{C}^{n}$ be a $d$-dimensional linear space.

## Construction of the variety

Let $\mathcal{L} \subset \mathbb{C}^{n}$ be a $d$-dimensional linear space.
$I \subseteq\{1, \ldots, n\}$ the set of inverted coordinates.

## Construction of the variety

Let $\mathcal{L} \subset \mathbb{C}^{n}$ be a $d$-dimensional linear space.
$I \subseteq\{1, \ldots, n\}$ the set of inverted coordinates.
Define a rational map inv/ : $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by:

$$
\left(\operatorname{inv}_{l}(x)\right)_{i}=\left\{\begin{array}{cl}
1 / x_{i} & \text { if } i \in I \\
x_{i} & \text { if } i \notin I
\end{array}\right.
$$

## Construction of the variety

Let $\mathcal{L} \subset \mathbb{C}^{n}$ be a $d$-dimensional linear space.
$I \subseteq\{1, \ldots, n\}$ the set of inverted coordinates.
Define a rational map inv/ : $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by:

$$
\left(\operatorname{inv}_{l}(x)\right)_{i}=\left\{\begin{array}{cl}
1 / x_{i} & \text { if } i \in I \\
x_{i} & \text { if } i \notin I
\end{array}\right.
$$

We denote $\operatorname{inv}_{l}(\mathcal{L})$ the Zariski closure of the image of $\mathcal{L}$ under this map. We obtain an algebraic variety.

## Construction of circuit polynomials

$M=M(\mathcal{L})$ be the matroid associated to $\mathcal{L} \subset \mathbb{C}^{n}$.

## Construction of circuit polynomials

$M=M(\mathcal{L})$ be the matroid associated to $\mathcal{L} \subset \mathbb{C}^{n}$.
$\ell(x)=\sum_{i \in[n]} a_{i} x_{i}$ vanishes on $\mathcal{L}$ if $\ell(x)=0$ for all $x \in \mathcal{L}$.

## Construction of circuit polynomials

$M=M(\mathcal{L})$ be the matroid associated to $\mathcal{L} \subset \mathbb{C}^{n}$.
$\ell(x)=\sum_{i \in[n]} a_{i} x_{i}$ vanishes on $\mathcal{L}$ if $\ell(x)=0$ for all $x \in \mathcal{L}$.
For every circuit $C$, there is a unique (up to scaling) linear form $\ell_{C}=\sum_{i \in C} a_{i} x_{i}$ vanishing on $\mathcal{L}$.

## Construction of circuit polynomials

$M=M(\mathcal{L})$ be the matroid associated to $\mathcal{L} \subset \mathbb{C}^{n}$.
$\ell(x)=\sum_{i \in[n]} a_{i} x_{i}$ vanishes on $\mathcal{L}$ if $\ell(x)=0$ for all $x \in \mathcal{L}$.
For every circuit $C$, there is a unique (up to scaling) linear form $\ell_{C}=\sum_{i \in C} a_{i} x_{i}$ vanishing on $\mathcal{L}$.
To each circuit, we associate the polynomial

## Construction of circuit polynomials

$M=M(\mathcal{L})$ be the matroid associated to $\mathcal{L} \subset \mathbb{C}^{n}$.
$\ell(x)=\sum_{i \in[n]} a_{i} x_{i}$ vanishes on $\mathcal{L}$ if $\ell(x)=0$ for all $x \in \mathcal{L}$.
For every circuit $C$, there is a unique (up to scaling) linear form $\ell_{C}=\sum_{i \in C} a_{i} x_{i}$ vanishing on $\mathcal{L}$.
To each circuit, we associate the polynomial

$$
\begin{aligned}
f_{C}(\mathbf{x}) & =\mathbf{x}^{C \cap I} \cdot \ell_{C}\left(\operatorname{inv}_{l}(\mathbf{x})\right) \\
& =\sum_{i \in C \cap I} a_{i} x^{C \cap / \backslash\{i\}}+\sum_{i \in C \backslash I} a_{i} x^{C \cap I \cup\{i\}}
\end{aligned}
$$

## Example

$$
I=\{1,2,3\}
$$

$$
\mathcal{L}=\text { rowspan }\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) \subset \mathbb{C}^{5} .
$$

## Example

$$
I=\{1,2,3\}
$$

$$
\begin{gathered}
\mathcal{L}=\operatorname{rowspan}\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) \subset \mathbb{C}^{5} . \\
l_{124}=x_{4}-x_{2}-x_{1} \\
l_{135}=x_{5}-x_{3}-x_{1} \\
l_{2345}=x_{5}-x_{4}-x_{3}+x_{2} .
\end{gathered}
$$

## Example

$$
I=\{1,2,3\}
$$

$$
\begin{gathered}
\mathcal{L}=\text { rowspan }\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) \subset \mathbb{C}^{5} . \\
l_{124}=x_{4}-x_{2}-x_{1} \\
l_{135}=x_{5}-x_{3}-x_{1} \\
l_{2345}=x_{5}-x_{4}-x_{3}+x_{2} \\
f_{124}=x_{1}\left(x_{4}-\frac{1}{x_{2}}-\frac{1}{x_{1}}\right)
\end{gathered}
$$

## Example

$$
I=\{1,2,3\}
$$

$$
\begin{gathered}
\mathcal{L}=\text { rowspan }\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) \subset \mathbb{C}^{5} . \\
l_{124}=x_{4}-x_{2}-x_{1} \\
l_{135}=x_{5}-x_{3}-x_{1} \\
l_{2345}=x_{5}-x_{4}-x_{3}+x_{2} . \\
f_{124}=x_{1}\left(x_{4}-\frac{1}{x_{2}}-\frac{1}{x_{1}}\right)=x_{1} x_{2} x_{4}-x_{1}-x_{2}
\end{gathered}
$$

## Example

$$
I=\{1,2,3\}
$$

$$
\begin{gathered}
\mathcal{L}=\text { rowspan }\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) \subset \mathbb{C}^{5} . \\
l_{124}=x_{4}-x_{2}-x_{1} \\
l_{135}=x_{5}-x_{3}-x_{1} \\
l_{2345}=x_{5}-x_{4}-x_{3}+x_{2} \\
f_{124}=x_{1}\left(x_{4}-\frac{1}{x_{2}}-\frac{1}{x_{1}}\right)=x_{1} x_{2} x_{4}-x_{1}-x_{2} \\
f_{135}=x_{1} x_{3}\left(x_{5}-\frac{1}{x_{3}}-\frac{1}{x_{1}}\right)
\end{gathered}
$$

## Example

$$
I=\{1,2,3\}
$$

$$
\begin{gathered}
\mathcal{L}=\text { rowspan }\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) \subset \mathbb{C}^{5} . \\
I_{124}=x_{4}-x_{2}-x_{1} \\
I_{135}=x_{5}-x_{3}-x_{1} \\
l_{2345}=x_{5}-x_{4}-x_{3}+x_{2} . \\
f_{124}=x_{1}\left(x_{4}-\frac{1}{x_{2}}-\frac{1}{x_{1}}\right)=x_{1} x_{2} x_{4}-x_{1}-x_{2} \\
f_{135}=x_{1} x_{3}\left(x_{5}-\frac{1}{x_{3}}-\frac{1}{x_{1}}\right)=x_{1} x_{3} x_{5}-x_{1}-x_{3}
\end{gathered}
$$

## Example

$$
I=\{1,2,3\}
$$

$$
\begin{gathered}
\mathcal{L}=\text { rowspan }\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) \subset \mathbb{C}^{5} . \\
I_{124}=x_{4}-x_{2}-x_{1} \\
l_{135}=x_{5}-x_{3}-x_{1} \\
I_{2345}=x_{5}-x_{4}-x_{3}+x_{2} . \\
f_{124}=x_{1}\left(x_{4}-\frac{1}{x_{2}}-\frac{1}{x_{1}}\right)=x_{1} x_{2} x_{4}-x_{1}-x_{2} \\
f_{135}=x_{1} x_{3}\left(x_{5}-\frac{1}{x_{3}}-\frac{1}{x_{1}}\right)=x_{1} x_{3} x_{5}-x_{1}-x_{3} \\
f_{2345}=x_{3}\left(x_{5}-x_{4}-\frac{1}{x_{3}}+\frac{1}{x_{2}}\right)
\end{gathered}
$$

## Example

$$
I=\{1,2,3\}
$$

$$
\begin{gathered}
\mathcal{L}=\text { rowspan }\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) \subset \mathbb{C}^{5} . \\
I_{124}=x_{4}-x_{2}-x_{1} \\
I_{135}=x_{5}-x_{3}-x_{1} \\
l_{2345}=x_{5}-x_{4}-x_{3}+x_{2} . \\
f_{124}=x_{1}\left(x_{4}-\frac{1}{x_{2}}-\frac{1}{x_{1}}\right)=x_{1} x_{2} x_{4}-x_{1}-x_{2} \\
f_{135}=x_{1} x_{3}\left(x_{5}-\frac{1}{x_{3}}-\frac{1}{x_{1}}\right)=x_{1} x_{3} x_{5}-x_{1}-x_{3} \\
f_{2345}=x_{3}\left(x_{5}-x_{4}-\frac{1}{x_{3}}+\frac{1}{x_{2}}\right)=x_{2} x_{3} x_{5}-x_{2} x_{3} x_{4}-x_{2}+x_{3} .
\end{gathered}
$$

## Initial Ideals

For $w \in(\mathbb{R} \geq 0)^{n}$ and $f=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{C}[\mathbf{x}]$,

## Initial Ideals

For $w \in(\mathbb{R} \geq 0)^{n}$ and $f=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{C}[\mathbf{x}]$,

$$
\operatorname{in}_{w}(f)=\sum_{\alpha: w^{\top} \alpha=\operatorname{deg}_{w}(f)} c_{\alpha} \mathbf{x}^{\alpha} .
$$

## Initial Ideals

For $w \in(\mathbb{R} \geq 0)^{n}$ and $f=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{C}[\mathbf{x}]$,

$$
\begin{aligned}
\mathrm{in}_{w}(f) & =\sum_{\alpha: w^{T}} c_{\alpha=\operatorname{deg}_{w}(f)} c_{\alpha} \mathbf{x}^{2} . \\
\mathrm{in}_{w}(\mathcal{I}) & =\left\langle\mathrm{in}_{w}(f): f \in \mathcal{I}\right\rangle
\end{aligned}
$$

## Initial Ideals

For $w \in(\mathbb{R} \geq 0)^{n}$ and $f=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{C}[\mathbf{x}]$,

$$
\begin{aligned}
& \operatorname{in}_{w}(f)=\sum_{\alpha: w^{\top} \alpha=\operatorname{deg}_{w}(f)} c_{\alpha} \mathbf{x}^{\alpha} . \\
& \operatorname{in}_{w}(\mathcal{I})=\left\langle\mathrm{in}_{w}(f): f \in \mathcal{I}\right\rangle
\end{aligned}
$$

Then $F \subset \mathcal{I}$ is a universal Gröbner basis for $\mathcal{I}$ if and only if for every $w \in(\mathbb{R} \geq 0)^{n}$, the polynomials in $_{w}(F)$ generate in $_{w}(\mathcal{I})$

## Example

Recall: $I=\{1,2,3\}$. for $w \in\left(\mathbb{R}_{+}\right)^{5}$ with $w_{1}<\ldots<w_{5}$.

## Example

Recall: $I=\{1,2,3\}$. for $w \in\left(\mathbb{R}_{+}\right)^{5}$ with $w_{1}<\ldots<w_{5}$.

$$
\begin{aligned}
\mathcal{L} & =\text { rowspan }\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) . \\
f_{124} & =x_{1}+x_{2}-x_{1} x_{2} x_{4} \\
f_{135} & =x_{1}+x_{3}-x_{1} x_{3} x_{5} \\
f_{2345} & =x_{2}-x_{3}+x_{2} x_{3} x_{4}-x_{2} x_{3} x_{5} .
\end{aligned}
$$

## Example

Recall: $I=\{1,2,3\}$. for $w \in\left(\mathbb{R}_{+}\right)^{5}$ with $w_{1}<\ldots<w_{5}$.

$$
\begin{gathered}
\mathcal{L}=\operatorname{rowspan}\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) . \\
f_{124}=x_{1}+x_{2}-x_{1} x_{2} x_{4} \\
f_{135}=x_{1}+x_{3}-x_{1} x_{3} x_{5} \\
f_{2345}=x_{2}-x_{3}+x_{2} x_{3} x_{4}-x_{2} x_{3} x_{5} . \\
\left\langle\operatorname{in}_{w}\left(f_{C}\right): C \in \mathcal{C}\right\rangle=\left\langle x_{1} x_{2} x_{4}, x_{1} x_{3} x_{5}, x_{2} x_{3} x_{5}\right\rangle
\end{gathered}
$$

## Broken Circuit Complex

Given a vector $w \in \mathbb{R}^{n}$ with distinct coordinates, define an ordering on [ $n$ ], where $i<j$ whenever $w_{i}<w_{j}$.

## Broken Circuit Complex

Given a vector $w \in \mathbb{R}^{n}$ with distinct coordinates, define an ordering on [ $n$ ], where $i<j$ whenever $w_{i}<w_{j}$.

## I-Broken Circuit

For each circuit $C$ of $M$, define an associated $I$-broken circuit

$$
b_{l}(C)= \begin{cases}C \backslash \min (C) & \text { if } C \subseteq I \\ (C \cap I) \cup \max (C \backslash I) & \text { if } C \nsubseteq I .\end{cases}
$$

## Broken Circuit Complex

Given a vector $w \in \mathbb{R}^{n}$ with distinct coordinates, define an ordering on [ $n$ ], where $i<j$ whenever $w_{i}<w_{j}$.

## I-Broken Circuit

For each circuit $C$ of $M$, define an associated $I$-broken circuit

$$
b_{I}(C)= \begin{cases}C \backslash \min (C) & \text { if } C \subseteq I \\ (C \cap I) \cup \max (C \backslash I) & \text { if } C \nsubseteq I\end{cases}
$$

## Broken Circuit Complex

Simplicial complex on [n] vertices, whose minimal non-faces are $l$-broken circuits of $M$ :
$\Delta_{w}(M, I)=\{\tau \subseteq[n]: \tau$ does not contain an $I$-broken circuit of $M\}$.

## Main Theorem

## Recall

Stanley-Reisner ideal of $\Delta$ is the square-free monomial ideal

$$
\mathcal{I}_{\Delta}=\left\langle\mathbf{x}^{S}: S \subseteq[n], S \notin \Delta\right\rangle .
$$

## Main Theorem

## Recall

Stanley-Reisner ideal of $\Delta$ is the square-free monomial ideal

$$
\mathcal{I}_{\Delta}=\left\langle\mathbf{x}^{S}: S \subseteq[n], S \notin \Delta\right\rangle .
$$

## Main Theorem

## Recall

Stanley-Reisner ideal of $\Delta$ is the square-free monomial ideal

$$
\mathcal{I}_{\Delta}=\left\langle\mathbf{x}^{S}: S \subseteq[n], S \notin \Delta\right\rangle .
$$

Theorem: Existence of UGB

## Main Theorem

## Recall

Stanley-Reisner ideal of $\Delta$ is the square-free monomial ideal

$$
\mathcal{I}_{\Delta}=\left\langle\mathrm{x}^{S}: S \subseteq[n], S \notin \Delta\right\rangle .
$$

## Theorem: Existence of UGB

Let $\mathcal{L} \subseteq \mathbb{C}^{n}$ be a linear space and let $\mathcal{I} \subseteq \mathbb{C}[\mathbf{x}]$ be the ideal of polynomials vanishing on inv/l $(\mathcal{L})$.

## Main Theorem

## Recall

Stanley-Reisner ideal of $\Delta$ is the square-free monomial ideal

$$
\mathcal{I}_{\Delta}=\left\langle\mathrm{x}^{S}: S \subseteq[n], S \notin \Delta\right\rangle .
$$

## Theorem: Existence of UGB

Let $\mathcal{L} \subseteq \mathbb{C}^{n}$ be a linear space and let $\mathcal{I} \subseteq \mathbb{C}[\mathbf{x}]$ be the ideal of polynomials vanishing on $\operatorname{inv}_{l}(\mathcal{L})$.
Then $\left\{f_{C}: C\right.$ is a circuit of $\left.M(\mathcal{L})\right\}$ is a universal Gröbner basis for $\mathcal{I}$.

## Main Theorem

## Recall

Stanley-Reisner ideal of $\Delta$ is the square-free monomial ideal

$$
\mathcal{I}_{\Delta}=\left\langle\mathbf{x}^{S}: S \subseteq[n], S \notin \Delta\right\rangle .
$$

## Theorem: Existence of UGB

Let $\mathcal{L} \subseteq \mathbb{C}^{n}$ be a linear space and let $\mathcal{I} \subseteq \mathbb{C}[\mathbf{x}]$ be the ideal of polynomials vanishing on inv/l $(\mathcal{L})$.
Then $\left\{f_{C}: C\right.$ is a circuit of $\left.M(\mathcal{L})\right\}$ is a universal Gröbner basis for $\mathcal{I}$.
For $w \in\left(\mathbb{R}_{+}\right)^{n}$ with distinct coordinates, the initial ideal $\mathrm{in}_{w}(\mathcal{I})$ is the Stanley-Reisner ideal of the semi-broken circuit complex $\Delta_{w}(M(\mathcal{L}), I)$.

## Example

Recall: $I=\{1,2,3\}$. for $w \in\left(\mathbb{R}_{+}\right)^{5}$ with $w_{1}<\ldots<w_{5}$.

## Example

Recall: $I=\{1,2,3\}$. for $w \in\left(\mathbb{R}_{+}\right)^{5}$ with $w_{1}<\ldots<w_{5}$.

$$
\begin{aligned}
\mathcal{L} & =\text { rowspan }\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) . \\
f_{124} & =x_{1}+x_{2}-x_{1} x_{2} x_{4} \\
f_{135} & =x_{1}+x_{3}-x_{1} x_{3} x_{5} \\
f_{2345} & =x_{2}-x_{3}+x_{2} x_{3} x_{4}-x_{2} x_{3} x_{5} .
\end{aligned}
$$

## Example

Recall: $I=\{1,2,3\}$. for $w \in\left(\mathbb{R}_{+}\right)^{5}$ with $w_{1}<\ldots<w_{5}$.

$$
\begin{gathered}
\mathcal{L}=\text { rowspan }\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) . \\
f_{124}=x_{1}+x_{2}-x_{1} x_{2} x_{4} \\
f_{135}=x_{1}+x_{3}-x_{1} x_{3} x_{5} \\
f_{2345}=x_{2}-x_{3}+x_{2} x_{3} x_{4}-x_{2} x_{3} x_{5} . \\
\left\langle\operatorname{in}_{w}\left(f_{C}\right): C \in \mathcal{C}\right\rangle=\left\langle x_{1} x_{2} x_{4}, x_{1} x_{3} x_{5}, x_{2} x_{3} x_{5}\right\rangle
\end{gathered}
$$

## Example

Recall: $I=\{1,2,3\}$. for $w \in\left(\mathbb{R}_{+}\right)^{5}$ with $w_{1}<\ldots<w_{5}$.

$$
\begin{gathered}
\mathcal{L}=\text { rowspan }\left(\begin{array}{ccccc}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) . \\
f_{124}=x_{1}+x_{2}-x_{1} x_{2} x_{4} \\
f_{135}=x_{1}+x_{3}-x_{1} x_{3} x_{5} \\
f_{2345}=x_{2}-x_{3}+x_{2} x_{3} x_{4}-x_{2} x_{3} x_{5} . \\
\left\langle\operatorname{in}_{w}\left(f_{C}\right): C \in \mathcal{C}\right\rangle=\left\langle x_{1} x_{2} x_{4}, x_{1} x_{3} x_{5}, x_{2} x_{3} x_{5}\right\rangle \\
\operatorname{facets}\left(\Delta_{w}(M, I)\right)=\{123,125,134,145,234,245,345\} .
\end{gathered}
$$

## Example

Recall: $I=\{1,2,3\}$. for $w \in\left(\mathbb{R}_{+}\right)^{5}$ with $w_{1}<\ldots<w_{5}$.

$$
\begin{gathered}
\mathcal{L}=\operatorname{rowspan}\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) \\
f_{124}=x_{1}+x_{2}-x_{1} x_{2} x_{4} \\
f_{135}=x_{1}+x_{3}-x_{1} x_{3} x_{5} \\
f_{2345}=x_{2}-x_{3}+x_{2} x_{3} x_{4}-x_{2} x_{3} x_{5} . \\
\left\langle\operatorname{in}_{w}\left(f_{C}\right): C \in \mathcal{C}\right\rangle=\left\langle x_{1} x_{2} x_{4}, x_{1} x_{3} x_{5}, x_{2} x_{3} x_{5}\right\rangle \\
\operatorname{facets}\left(\Delta_{w}(M, I)\right)=\{123,125,134,145,234,245,345\} .
\end{gathered}
$$

[Ref to exercises], the variety of $\left\langle x_{1} x_{2} x_{4}, x_{1} x_{3} x_{5}, x_{2} x_{3} x_{5}\right\rangle$ is the union the seven coordinate linear spaces $\operatorname{span}\left\{e_{i}, e_{j}, e_{k}\right\}$ where $\{i, j, k\}$ is a facet of $\Delta_{w}(M, I)$.

## Example

Recall: $I=\{1,2,3\}$. for $w \in\left(\mathbb{R}_{+}\right)^{5}$ with $w_{1}<\ldots<w_{5}$.

$$
\begin{aligned}
\mathcal{L} & =\text { rowspan }\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) . \\
f_{124} & =x_{1}+x_{2}-x_{1} x_{2} x_{4} \\
f_{135} & =x_{1}+x_{3}-x_{1} x_{3} x_{5} \\
f_{2345} & =x_{2}-x_{3}+x_{2} x_{3} x_{4}-x_{2} x_{3} x_{5} .
\end{aligned}
$$

$$
\left\langle\operatorname{in}_{w}\left(f_{C}\right): C \in \mathcal{C}\right\rangle=\left\langle x_{1} x_{2} x_{4}, x_{1} x_{3} x_{5}, x_{2} x_{3} x_{5}\right\rangle=\mathcal{I}_{\Delta_{w}(M, I)}
$$

$$
\operatorname{facets}\left(\Delta_{w}(M, I)\right)=\{123,125,134,145,234,245,345\}
$$

[Ref to exercises], the variety of $\left\langle x_{1} x_{2} x_{4}, x_{1} x_{3} x_{5}, x_{2} x_{3} x_{5}\right\rangle$ is the union the seven coordinate linear spaces $\operatorname{span}\left\{e_{i}, e_{j}, e_{k}\right\}$ where $\{i, j, k\}$ is a facet of $\Delta_{w}(M, I)$.

## Deletion Contraction

## Deletion Contraction

## Recall: Broken Circuit Complex

Simplicial complex on $[n]$ vertices:
$\Delta_{w}(M, I)=\{\tau \subseteq[n]: \tau$ does not contain an $I$-broken circuit of $M\}$.

## Deletion Contraction

## Recall: Broken Circuit Complex

Simplicial complex on $[n]$ vertices:
$\Delta_{w}(M, I)=\{\tau \subseteq[n]: \tau$ does not contain an $I$-broken circuit of $M\}$.

## Theorem

For $\Delta_{w}(M, I)$ an $I$-broken circuit complex.

## Deletion Contraction

## Recall: Broken Circuit Complex

Simplicial complex on $[n]$ vertices:
$\Delta_{w}(M, I)=\{\tau \subseteq[n]: \tau$ does not contain an $I$-broken circuit of $M\}$.

## Theorem

For $\Delta_{w}(M, I)$ an $I$-broken circuit complex. If $i \in I$ is a loop of $M$, then $\Delta_{w}(M, I)=\emptyset$.

## Deletion Contraction

## Recall: Broken Circuit Complex

Simplicial complex on $[n]$ vertices:
$\Delta_{w}(M, I)=\{\tau \subseteq[n]: \tau$ does not contain an $I$-broken circuit of $M\}$.

## Theorem

For $\Delta_{w}(M, I)$ an $I$-broken circuit complex.
If $i \in I$ is a loop of $M$, then $\Delta_{w}(M, I)=\emptyset$.
If $i \in I$ is a coloop of $M$, then $\Delta_{w}(M, I)=\operatorname{cone}\left(\Delta_{w}(M / i, I \backslash i), i\right)$.

## Deletion Contraction

## Recall: Broken Circuit Complex

Simplicial complex on $[n]$ vertices:
$\Delta_{w}(M, I)=\{\tau \subseteq[n]: \tau$ does not contain an $I$-broken circuit of $M\}$.

## Theorem

For $\Delta_{w}(M, I)$ an $I$-broken circuit complex.
If $i \in I$ is a loop of $M$, then $\Delta_{w}(M, I)=\emptyset$.
If $i \in I$ is a coloop of $M$, then $\Delta_{w}(M, I)=\operatorname{cone}\left(\Delta_{w}(M / i, I \backslash i), i\right)$.
If $i=\max (I)$ is neither a loop nor a coloop of $M$, then

$$
\Delta_{w}(M, I)=\Delta_{w}(M \backslash i, I \backslash i) \cup \operatorname{cone}\left(\Delta_{w}(M / i, I \backslash i), i\right)
$$

## Deletion Contraction

## Recall: Broken Circuit Complex

Simplicial complex on $[n]$ vertices:
$\Delta_{w}(M, I)=\{\tau \subseteq[n]: \tau$ does not contain an $I$-broken circuit of $M\}$.

## Theorem

For $\Delta_{w}(M, I)$ an $I$-broken circuit complex.
If $i \in I$ is a loop of $M$, then $\Delta_{w}(M, I)=\emptyset$.
If $i \in I$ is a coloop of $M$, then $\Delta_{w}(M, I)=\operatorname{cone}\left(\Delta_{w}(M / i, I \backslash i), i\right)$.
If $i=\max (I)$ is neither a loop nor a coloop of $M$, then

$$
\Delta_{w}(M, I)=\Delta_{w}(M \backslash i, I \backslash i) \cup \operatorname{cone}\left(\Delta_{w}(M / i, I \backslash i), i\right)
$$

$$
\left\langle\mathrm{in}_{w}\left(f_{C}\right): C \in \mathcal{C}(M)\right\rangle=\mathcal{I}_{\Delta_{w}(M, l)}
$$

## Recursion on the Degree

## Recursion on the Degree

## $D(\mathcal{L}, I)$ denote the degree of the affine variety $\operatorname{inv}_{/}(\mathcal{L})$.

## Recursion on the Degree

## $D(\mathcal{L}, I)$ denote the degree of the affine variety $\operatorname{inv}_{/}(\mathcal{L})$.

## Proposition

## Recursion on the Degree

$D(\mathcal{L}, I)$ denote the degree of the affine variety $\operatorname{inv}_{/}(\mathcal{L})$.

## Proposition

If $i \in I$ is a loop of $M(\mathcal{L})$, then $\operatorname{inv}_{I}(\mathcal{L})$ is empty and $D(\mathcal{L}, I)=0$.

## Recursion on the Degree

$D(\mathcal{L}, I)$ denote the degree of the affine variety $\operatorname{inv}_{/}(\mathcal{L})$.
Proposition
If $i \in I$ is a loop of $M(\mathcal{L})$, then $\operatorname{inv}_{I}(\mathcal{L})$ is empty and $D(\mathcal{L}, I)=0$.
If $i \in I$ is a co-loop of $M(\mathcal{L})$, then $D(\mathcal{L}, I)=D(\mathcal{L} / i, I \backslash i)$.

## Recursion on the Degree

## $D(\mathcal{L}, I)$ denote the degree of the affine variety $\operatorname{inv}_{/}(\mathcal{L})$.

## Proposition

If $i \in I$ is a loop of $M(\mathcal{L})$, then $\operatorname{inv}_{I}(\mathcal{L})$ is empty and $D(\mathcal{L}, I)=0$.
If $i \in I$ is a co-loop of $M(\mathcal{L})$, then $D(\mathcal{L}, I)=D(\mathcal{L} / i, I \backslash i)$.
If $i \in I$ is neither a loop nor a coloop of $M(\mathcal{L})$ then

$$
D(\mathcal{L} \backslash i, I \backslash i)+D(\mathcal{L} / i, I \backslash i) \leq D(\mathcal{L}, I)
$$

## Recursion on the Degree

$D(\mathcal{L}, I)$ denote the degree of the affine variety $\operatorname{inv}_{/}(\mathcal{L})$.

## Proposition

If $i \in I$ is a loop of $M(\mathcal{L})$, then $\operatorname{inv}_{I}(\mathcal{L})$ is empty and $D(\mathcal{L}, I)=0$.
If $i \in I$ is a co-loop of $M(\mathcal{L})$, then $D(\mathcal{L}, I)=D(\mathcal{L} / i, I \backslash i)$.
If $i \in I$ is neither a loop nor a coloop of $M(\mathcal{L})$ then

$$
D(\mathcal{L} \backslash i, \Lambda i)+D(\mathcal{L} / i, I \backslash i) \leq D(\mathcal{L}, I)
$$

Sketch of proof: Let $\mathcal{J}$ be the homogenization of $\mathcal{I}$ with respect to $x_{0}$, the variety of $\mathrm{in}_{w}(\mathcal{J})$ contains the image in $\mathbb{P}^{n}$ of both $\{0\} \times \operatorname{inv}_{\backslash \backslash 1}(\mathcal{L} \backslash 1)$ and $\mathbb{A}^{1}(\mathbb{C}) \times \operatorname{inv}_{\backslash \backslash 1}(\mathcal{L} / 1)$.

## Recursion on the Degree

$D(\mathcal{L}, I)$ denote the degree of the affine variety $\operatorname{inv}_{/}(\mathcal{L})$.

## Proposition

If $i \in I$ is a loop of $M(\mathcal{L})$, then $\operatorname{inv}_{I}(\mathcal{L})$ is empty and $D(\mathcal{L}, I)=0$.
If $i \in I$ is a co-loop of $M(\mathcal{L})$, then $D(\mathcal{L}, I)=D(\mathcal{L} / i, I \backslash i)$.
If $i \in I$ is neither a loop nor a coloop of $M(\mathcal{L})$ then

$$
D(\mathcal{L} \backslash i, \Lambda i)+D(\mathcal{L} / i, I \backslash i) \leq D(\mathcal{L}, I)
$$

Sketch of proof: Let $\mathcal{J}$ be the homogenization of $\mathcal{I}$ with respect to $x_{0}$, the variety of $\mathrm{in}_{w}(\mathcal{J})$ contains the image in $\mathbb{P}^{n}$ of both $\{0\} \times \operatorname{inv}_{\backslash \backslash 1}(\mathcal{L} \backslash 1)$ and $\mathbb{A}^{1}(\mathbb{C}) \times \operatorname{inv}^{\prime} \backslash 1(\mathcal{L} / 1)$.
Since both these varieties have dimension equal to $\operatorname{dim}(\mathcal{L})$, the degree of the variety of $\mathrm{in}_{w}(\mathcal{J})$ is at least the sum of their degrees.

## Equality of Ideals

## Equality of Ideals

We homogenize and proceed by induction on the size of $I$. Let $\Delta_{0}$ be the cone of the broken circuit complex $\Delta$ over the vertex $0, \Delta_{0}$ has at most $D(\mathcal{L}, I)$ facets.

## Equality of Ideals

We homogenize and proceed by induction on the size of $I$. Let $\Delta_{0}$ be the cone of the broken circuit complex $\Delta$ over the vertex $0, \Delta_{0}$ has at most $D(\mathcal{L}, I)$ facets.
Assume, for induction, that $D(\mathcal{L} \backslash i, \backslash i)$ and $D(\mathcal{L} / i, \Omega \backslash i)$ are the number of facets of $\Delta_{w}(M \backslash i, I \backslash i)$ and $\Delta_{w}(M / i, I \backslash i)$, respectively.

## Equality of Ideals

We homogenize and proceed by induction on the size of $I$. Let $\Delta_{0}$ be the cone of the broken circuit complex $\Delta$ over the vertex $0, \Delta_{0}$ has at most $D(\mathcal{L}, I)$ facets.
Assume, for induction, that $D(\mathcal{L} \backslash i, \backslash i)$ and $D(\mathcal{L} / i, \Omega \backslash i)$ are the number of facets of $\Delta_{w}(M \backslash i, I \backslash i)$ and $\Delta_{w}(M / i, I \backslash i)$, respectively.

## Equality argument

$\mathcal{I}_{\Delta_{0}} \subseteq i n_{0, w}(\mathcal{J}) \subseteq \mathbb{C}[\mathbf{x}]$ are equidimensional homogeneous ideals of dimension $d . \mathcal{I}_{\Delta_{0}}$ is radical and $\operatorname{deg}\left(\mathcal{I}_{\Delta_{0}}\right) \leq \operatorname{deg}(\mathcal{J})=D(\mathcal{L}, I)$, therefore $\mathcal{I}_{\Delta_{0}}$ and $\mathcal{J}$ are equal.

## Real Intersections and Hyperplane Arrangements

## Proposition

If $\mathcal{L} \subset \mathbb{C}^{n}$ is invariant under complex conjugation, then for any $u \in \mathbb{R}^{n}$, all of the intersection points of $\operatorname{inv}_{l}^{-}(\mathcal{L})$ with $\mathcal{L}^{\perp}+u$ are real.

## Real Intersections and Hyperplane Arrangements

## Proposition

If $\mathcal{L} \subset \mathbb{C}^{n}$ is invariant under complex conjugation, then for any $u \in \mathbb{R}^{n}$, all of the intersection points of $\operatorname{inv}_{\text {I }}^{-}(\mathcal{L})$ with $\mathcal{L}^{\perp}+u$ are real.

## Proposition

For generic $u \in \mathbb{R}^{n}$, the intersection points of $\operatorname{inv}_{\text {I }}^{-}(\mathcal{L})$ with $\mathcal{L}^{\perp}+u$ are the minima of the function

$$
f(x)=\frac{1}{2} \sum_{j \neq I} x_{j}^{2}-\sum_{j \in I} \log \left|x_{j}\right|
$$

over the regions in the complement of the (affine) hyperplane arrangement $\left\{x_{i}=0\right\}_{i \in I}$ in the affine linear space $\mathcal{L}^{\perp}+u$.

## Thank you



