Semi-Inverted Linear Spaces

Georgy Scholten

North Carolina State University

ghscholt@ncsu.edu

June 21, 2019

Let $\mathcal{L} \subset \mathbb{C}^n$ be a *d*-dimensional linear space.

Let $\mathcal{L} \subset \mathbb{C}^n$ be a d-dimensional linear space. $I \subseteq \{1, \ldots, n\}$ the set of inverted coordinates. Let $\mathcal{L} \subset \mathbb{C}^n$ be a d-dimensional linear space. $I \subseteq \{1, \ldots, n\}$ the set of inverted coordinates. Define a rational map inv_I : $\mathbb{C}^n \dashrightarrow \mathbb{C}^n$ by:

$$(\operatorname{inv}_I(x))_i = \begin{cases} 1/x_i & \text{if } i \in I \\ x_i & \text{if } i \notin I. \end{cases}$$

Let $\mathcal{L} \subset \mathbb{C}^n$ be a d-dimensional linear space. $I \subseteq \{1, \ldots, n\}$ the set of inverted coordinates. Define a rational map inv_I : $\mathbb{C}^n \dashrightarrow \mathbb{C}^n$ by:

$$(\operatorname{inv}_I(x))_i = \begin{cases} 1/x_i & \text{if } i \in I \\ x_i & \text{if } i \notin I. \end{cases}$$

We denote $inv_I(\mathcal{L})$ the Zariski closure of the image of \mathcal{L} under this map. We obtain an algebraic variety.

 $M = M(\mathcal{L})$ be the matroid associated to $\mathcal{L} \subset \mathbb{C}^n$.

 $M = M(\mathcal{L})$ be the matroid associated to $\mathcal{L} \subset \mathbb{C}^n$. $\ell(x) = \sum_{i \in [n]} a_i x_i$ vanishes on \mathcal{L} if $\ell(x) = 0$ for all $x \in \mathcal{L}$. $M = M(\mathcal{L})$ be the matroid associated to $\mathcal{L} \subset \mathbb{C}^n$. $\ell(x) = \sum_{i \in [n]} a_i x_i$ vanishes on \mathcal{L} if $\ell(x) = 0$ for all $x \in \mathcal{L}$. For every circuit C, there is a unique (up to scaling) linear form $\ell_C = \sum_{i \in C} a_i x_i$ vanishing on \mathcal{L} . $M = M(\mathcal{L})$ be the matroid associated to $\mathcal{L} \subset \mathbb{C}^n$. $\ell(x) = \sum_{i \in [n]} a_i x_i$ vanishes on \mathcal{L} if $\ell(x) = 0$ for all $x \in \mathcal{L}$. For every circuit C, there is a unique (up to scaling) linear form $\ell_C = \sum_{i \in C} a_i x_i$ vanishing on \mathcal{L} .

To each circuit, we associate the polynomial

 $M = M(\mathcal{L})$ be the matroid associated to $\mathcal{L} \subset \mathbb{C}^n$. $\ell(x) = \sum_{i \in [n]} a_i x_i$ vanishes on \mathcal{L} if $\ell(x) = 0$ for all $x \in \mathcal{L}$. For every circuit C, there is a unique (up to scaling) linear form $\ell_C = \sum_{i \in C} a_i x_i$ vanishing on \mathcal{L} . To each circuit, we associate the polynomial

beach circuit, we associate the polynomial

$$f_{C}(\mathbf{x}) = \mathbf{x}^{C \cap I} \cdot \ell_{C}(\operatorname{inv}_{I}(\mathbf{x}))$$

= $\sum_{i \in C \cap I} a_{i} \mathbf{x}^{C \cap I \setminus \{i\}} + \sum_{i \in C \setminus I} a_{i} \mathbf{x}^{C \cap I \cup \{i\}}.$

$$\mathcal{L} = \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \subset \mathbb{C}^5.$$

$$\mathcal{L} = \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \subset \mathbb{C}^5.$$
$$l_{124} = x_4 - x_2 - x_1$$
$$l_{135} = x_5 - x_3 - x_1$$
$$l_{2345} = x_5 - x_4 - x_3 + x_2.$$

$$\begin{split} \mathcal{L} &= \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \subset \mathbb{C}^5. \\ & & l_{124} = x_4 - x_2 - x_1 \\ & & l_{135} = x_5 - x_3 - x_1 \\ & & l_{2345} = x_5 - x_4 - x_3 + x_2. \end{split}$$

$$f_{124} = x_1 \left(x_4 - \frac{1}{x_2} - \frac{1}{x_1} \right)$$

$$\begin{split} \mathcal{L} &= \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \subset \mathbb{C}^5. \\ & & l_{124} = x_4 - x_2 - x_1 \\ & & l_{135} = x_5 - x_3 - x_1 \\ & & l_{2345} = x_5 - x_4 - x_3 + x_2. \end{split}$$

$$f_{124} = x_1 \left(x_4 - \frac{1}{x_2} - \frac{1}{x_1} \right) = x_1 x_2 x_4 - x_1 - x_2 \end{split}$$

$$\begin{split} \mathcal{L} &= \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \subset \mathbb{C}^5.\\ && l_{124} = x_4 - x_2 - x_1 \\ && l_{135} = x_5 - x_3 - x_1 \\ && l_{2345} = x_5 - x_4 - x_3 + x_2. \end{split}$$

$$f_{124} = x_1 \left(x_4 - \frac{1}{x_2} - \frac{1}{x_1} \right) = x_1 x_2 x_4 - x_1 - x_2 \\ f_{135} = x_1 x_3 \left(x_5 - \frac{1}{x_3} - \frac{1}{x_1} \right) \end{split}$$

$$\begin{aligned} \mathcal{L} &= \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \subset \mathbb{C}^5. \\ & & l_{124} = x_4 - x_2 - x_1 \\ & & l_{135} = x_5 - x_3 - x_1 \\ & & l_{2345} = x_5 - x_4 - x_3 + x_2. \end{aligned}$$

$$f_{124} = x_1 \left(x_4 - \frac{1}{x_2} - \frac{1}{x_1} \right) = x_1 x_2 x_4 - x_1 - x_2 \\ f_{135} = x_1 x_3 \left(x_5 - \frac{1}{x_3} - \frac{1}{x_1} \right) = x_1 x_3 x_5 - x_1 - x_3 \end{aligned}$$

$$\mathcal{L} = \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \subset \mathbb{C}^5.$$

$$\begin{split} & l_{124} = x_4 - x_2 - x_1 \\ & l_{135} = x_5 - x_3 - x_1 \\ & l_{2345} = x_5 - x_4 - x_3 + x_2. \end{split}$$

$$f_{124} = x_1 \left(x_4 - \frac{1}{x_2} - \frac{1}{x_1} \right) = x_1 x_2 x_4 - x_1 - x_2 \\ f_{135} = x_1 x_3 \left(x_5 - \frac{1}{x_3} - \frac{1}{x_1} \right) = x_1 x_3 x_5 - x_1 - x_3 \\ f_{2345} = x_3 \left(x_5 - x_4 - \frac{1}{x_3} + \frac{1}{x_2} \right) \end{split}$$

$$\mathcal{L} = \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \subset \mathbb{C}^5.$$

$$\begin{split} & I_{124} = x_4 - x_2 - x_1 \\ & I_{135} = x_5 - x_3 - x_1 \\ & I_{2345} = x_5 - x_4 - x_3 + x_2. \end{split}$$

$$f_{124} = x_1 \left(x_4 - \frac{1}{x_2} - \frac{1}{x_1} \right) = x_1 x_2 x_4 - x_1 - x_2 \\ f_{135} = x_1 x_3 \left(x_5 - \frac{1}{x_3} - \frac{1}{x_1} \right) = x_1 x_3 x_5 - x_1 - x_3 \\ f_{2345} = x_3 \left(x_5 - x_4 - \frac{1}{x_3} + \frac{1}{x_2} \right) = x_2 x_3 x_5 - x_2 x_3 x_4 - x_2 + x_3. \end{split}$$

For $w \in (\mathbb{R}_{\geq 0})^n$ and $f = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{C}[\mathbf{x}]$,

For
$$w \in (\mathbb{R}_{\geq 0})^n$$
 and $f = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{C}[\mathbf{x}]$,

$$\operatorname{in}_{w}(f) = \sum_{\alpha: w^{T} \alpha = \operatorname{deg}_{w}(f)} c_{\alpha} \mathbf{x}^{\alpha}.$$

For $w \in (\mathbb{R}_{\geq 0})^n$ and $f = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{C}[\mathbf{x}]$,

$$\begin{split} \mathsf{in}_w(f) &= \sum_{\alpha: w^T \alpha = \mathsf{deg}_w(f)} c_\alpha \mathbf{x}^\alpha \\ \mathsf{in}_w(\mathcal{I}) &= \langle \mathsf{in}_w(f) : f \in \mathcal{I} \rangle \end{split}$$

For
$$w \in (\mathbb{R}_{\geq 0})^n$$
 and $f = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{C}[\mathbf{x}]$,

$$\begin{split} \mathsf{in}_w(f) &= \sum_{\alpha: w^T \alpha = \mathsf{deg}_w(f)} c_\alpha \mathbf{x}^\alpha.\\ \mathsf{in}_w(\mathcal{I}) &= \langle \mathsf{in}_w(f) : f \in \mathcal{I} \rangle \end{split}$$

Then $F \subset \mathcal{I}$ is a universal Gröbner basis for \mathcal{I} if and only if for every $w \in (\mathbb{R}_{\geq 0})^n$, the polynomials $\operatorname{in}_w(F)$ generate $\operatorname{in}_w(\mathcal{I})$

Recall: $I = \{1, 2, 3\}$. for $w \in (\mathbb{R}_+)^5$ with $w_1 < \ldots < w_5$.

Recall: $I = \{1, 2, 3\}$. for $w \in (\mathbb{R}_+)^5$ with $w_1 < \ldots < w_5$.

$$\mathcal{L} = \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$
$$f_{124} = x_1 + x_2 - x_1 x_2 x_4$$
$$f_{135} = x_1 + x_3 - x_1 x_3 x_5$$
$$f_{2345} = x_2 - x_3 + x_2 x_3 x_4 - x_2 x_3 x_5.$$

•

Recall: $I = \{1, 2, 3\}$. for $w \in (\mathbb{R}_+)^5$ with $w_1 < \ldots < w_5$.

$$\mathcal{L} = \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$
$$f_{124} = x_1 + x_2 - x_1 x_2 x_4$$
$$f_{135} = x_1 + x_3 - x_1 x_3 x_5$$
$$f_{2345} = x_2 - x_3 + x_2 x_3 x_4 - x_2 x_3 x_5.$$

 $\langle \mathsf{in}_w(f_C) : C \in \mathcal{C} \rangle = \langle x_1 x_2 x_4, x_1 x_3 x_5, x_2 x_3 x_5 \rangle$

•

Broken Circuit Complex

Given a vector $w \in \mathbb{R}^n$ with distinct coordinates, define an ordering on [n], where i < j whenever $w_i < w_j$.

Broken Circuit Complex

Given a vector $w \in \mathbb{R}^n$ with distinct coordinates, define an ordering on [n], where i < j whenever $w_i < w_j$.

I-Broken Circuit

For each circuit C of M, define an associated I-broken circuit

$$b_{I}(C) = \begin{cases} C \setminus \min(C) & \text{if } C \subseteq I \\ (C \cap I) \cup \max(C \setminus I) & \text{if } C \not\subseteq I. \end{cases}$$

Broken Circuit Complex

Given a vector $w \in \mathbb{R}^n$ with distinct coordinates, define an ordering on [n], where i < j whenever $w_i < w_j$.

I-Broken Circuit

For each circuit C of M, define an associated I-broken circuit

$$b_I(C) = \begin{cases} C \setminus \min(C) & \text{if } C \subseteq I \\ (C \cap I) \cup \max(C \setminus I) & \text{if } C \not\subseteq I. \end{cases}$$

Broken Circuit Complex

Simplicial complex on [n] vertices, whose minimal non-faces are *I*-broken circuits of M:

 $\Delta_w(M,I) = \{\tau \subseteq [n] : \tau \text{ does not contain an } I\text{-broken circuit of } M\}.$

Stanley-Reisner ideal of Δ is the square-free monomial ideal

$$\mathcal{I}_{\Delta} = \left\langle \mathbf{x}^{S} : S \subseteq [n], S \notin \Delta \right\rangle.$$

Stanley-Reisner ideal of Δ is the square-free monomial ideal

$$\mathcal{I}_{\Delta} = \left\langle \mathbf{x}^{S} : S \subseteq [n], S \notin \Delta \right\rangle.$$

Stanley-Reisner ideal of Δ is the square-free monomial ideal

$$\mathcal{I}_{\Delta} = \left\langle \mathbf{x}^{S} : S \subseteq [n], S \notin \Delta \right\rangle.$$

Theorem: Existence of UGB

Stanley-Reisner ideal of Δ is the square-free monomial ideal

$$\mathcal{I}_{\Delta} = \left\langle \mathbf{x}^{S} : S \subseteq [n], S \notin \Delta \right\rangle.$$

Theorem: Existence of UGB

Let $\mathcal{L} \subseteq \mathbb{C}^n$ be a linear space and let $\mathcal{I} \subseteq \mathbb{C}[\mathbf{x}]$ be the ideal of polynomials vanishing on $inv_I(\mathcal{L})$.

Stanley-Reisner ideal of Δ is the square-free monomial ideal

$$\mathcal{I}_{\Delta} = \left\langle \mathbf{x}^{S} : S \subseteq [n], S \notin \Delta \right\rangle.$$

Theorem: Existence of UGB

Let $\mathcal{L} \subseteq \mathbb{C}^n$ be a linear space and let $\mathcal{I} \subseteq \mathbb{C}[\mathbf{x}]$ be the ideal of polynomials vanishing on $\operatorname{inv}_I(\mathcal{L})$.

Then $\{f_C : C \text{ is a circuit of } M(\mathcal{L})\}$ is a universal Gröbner basis for \mathcal{I} .

Stanley-Reisner ideal of Δ is the square-free monomial ideal

$$\mathcal{I}_{\Delta} = \left\langle \mathbf{x}^{S} : S \subseteq [n], S \notin \Delta \right\rangle.$$

Theorem: Existence of UGB

Let $\mathcal{L} \subseteq \mathbb{C}^n$ be a linear space and let $\mathcal{I} \subseteq \mathbb{C}[\mathbf{x}]$ be the ideal of polynomials vanishing on $\operatorname{inv}_I(\mathcal{L})$.

Then $\{f_C : C \text{ is a circuit of } M(\mathcal{L})\}$ is a universal Gröbner basis for \mathcal{I} . For $w \in (\mathbb{R}_+)^n$ with distinct coordinates, the initial ideal $\operatorname{in}_w(\mathcal{I})$ is the Stanley-Reisner ideal of the semi-broken circuit complex $\Delta_w(M(\mathcal{L}), I)$.

Recall: $I = \{1, 2, 3\}$. for $w \in (\mathbb{R}_+)^5$ with $w_1 < \ldots < w_5$.

Recall: $I = \{1, 2, 3\}$. for $w \in (\mathbb{R}_+)^5$ with $w_1 < \ldots < w_5$.

$$\mathcal{L} = \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

•

$$f_{124} = x_1 + x_2 - x_1 x_2 x_4$$

$$f_{135} = x_1 + x_3 - x_1 x_3 x_5$$

$$f_{2345} = x_2 - x_3 + x_2 x_3 x_4 - x_2 x_3 x_5.$$

Recall: $I = \{1, 2, 3\}$. for $w \in (\mathbb{R}_+)^5$ with $w_1 < \ldots < w_5$.

$$\mathcal{L} = \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

•

$$f_{124} = x_1 + x_2 - x_1 x_2 x_4$$

$$f_{135} = x_1 + x_3 - x_1 x_3 x_5$$

$$f_{2345} = x_2 - x_3 + x_2 x_3 x_4 - x_2 x_3 x_5.$$

 $\langle \mathsf{in}_w(f_C) : C \in \mathcal{C} \rangle = \langle x_1 x_2 x_4, x_1 x_3 x_5, x_2 x_3 x_5 \rangle$

Recall: $I = \{1, 2, 3\}$. for $w \in (\mathbb{R}_+)^5$ with $w_1 < \ldots < w_5$.

$$\mathcal{L} = \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

$$f_{124} = x_1 + x_2 - x_1 x_2 x_4$$

$$f_{135} = x_1 + x_3 - x_1 x_3 x_5$$

$$f_{2345} = x_2 - x_3 + x_2 x_3 x_4 - x_2 x_3 x_5.$$

 $\langle \mathsf{in}_w(f_C) : C \in \mathcal{C} \rangle = \langle x_1 x_2 x_4, x_1 x_3 x_5, x_2 x_3 x_5 \rangle$

 $\mathrm{facets}(\Delta_w(M,I)) \ = \ \{123,125,134,145,234,245,345\}.$

Recall: $I = \{1, 2, 3\}$. for $w \in (\mathbb{R}_+)^5$ with $w_1 < \ldots < w_5$.

$$\mathcal{L} = \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$f_{124} = x_1 + x_2 - x_1 x_2 x_4$$

$$f_{135} = x_1 + x_3 - x_1 x_3 x_5$$

$$f_{2345} = x_2 - x_3 + x_2 x_3 x_4 - x_2 x_3 x_5.$$

 $\langle \mathsf{in}_w(f_C) : C \in \mathcal{C} \rangle = \langle x_1 x_2 x_4, x_1 x_3 x_5, x_2 x_3 x_5 \rangle$

 $\mathrm{facets}(\Delta_w(M,I)) = \{123, 125, 134, 145, 234, 245, 345\}.$

[Ref to exercises], the variety of $\langle x_1x_2x_4, x_1x_3x_5, x_2x_3x_5 \rangle$ is the union the seven coordinate linear spaces $\operatorname{span}\{e_i, e_j, e_k\}$ where $\{i, j, k\}$ is a facet of $\Delta_w(M, I)$.

Recall: $I = \{1, 2, 3\}$. for $w \in (\mathbb{R}_+)^5$ with $w_1 < \ldots < w_5$.

$$\mathcal{L} = \operatorname{rowspan} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$f_{124} = x_1 + x_2 - x_1 x_2 x_4$$

$$f_{135} = x_1 + x_3 - x_1 x_3 x_5$$

$$f_{2345} = x_2 - x_3 + x_2 x_3 x_4 - x_2 x_3 x_5.$$

 $\langle \mathsf{in}_w(f_C) : C \in \mathcal{C} \rangle = \langle x_1 x_2 x_4, x_1 x_3 x_5, x_2 x_3 x_5 \rangle = \mathcal{I}_{\Delta_w(M,I)}.$

 $\mathrm{facets}(\Delta_w(M,I)) = \{123, 125, 134, 145, 234, 245, 345\}.$

[Ref to exercises], the variety of $\langle x_1x_2x_4, x_1x_3x_5, x_2x_3x_5 \rangle$ is the union the seven coordinate linear spaces $\operatorname{span}\{e_i, e_j, e_k\}$ where $\{i, j, k\}$ is a facet of $\Delta_w(M, I)$.

Recall: Broken Circuit Complex

Simplicial complex on [n] vertices:

 $\Delta_w(M, I) = \{ \tau \subseteq [n] : \tau \text{ does not contain an } I \text{-broken circuit of } M \}.$

Recall: Broken Circuit Complex

Simplicial complex on [n] vertices:

 $\Delta_w(M,I) = \{\tau \subseteq [n] : \tau \text{ does not contain an } I\text{-broken circuit of } M\}.$

Theorem

For $\Delta_w(M, I)$ an *I*-broken circuit complex.

Recall: Broken Circuit Complex

Simplicial complex on [n] vertices:

 $\Delta_w(M,I) = \{\tau \subseteq [n] : \tau \text{ does not contain an } I\text{-broken circuit of } M\}.$

Theorem

For $\Delta_w(M, I)$ an *I*-broken circuit complex.

If $i \in I$ is a loop of M, then $\Delta_w(M, I) = \emptyset$.

Recall: Broken Circuit Complex

Simplicial complex on [n] vertices:

 $\Delta_w(M,I) = \{\tau \subseteq [n] : \tau \text{ does not contain an } I\text{-broken circuit of } M\}.$

Theorem

For $\Delta_w(M, I)$ an *I*-broken circuit complex. If $i \in I$ is a loop of M, then $\Delta_w(M, I) = \emptyset$. If $i \in I$ is a coloop of M, then $\Delta_w(M, I) = \operatorname{cone}(\Delta_w(M/i, I \setminus i), i)$.

Recall: Broken Circuit Complex

Simplicial complex on [n] vertices:

 $\Delta_w(M,I) = \{\tau \subseteq [n] : \tau \text{ does not contain an } I\text{-broken circuit of } M\}.$

Theorem

For $\Delta_w(M, I)$ an *I*-broken circuit complex. If $i \in I$ is a loop of M, then $\Delta_w(M, I) = \emptyset$. If $i \in I$ is a coloop of M, then $\Delta_w(M, I) = \operatorname{cone}(\Delta_w(M/i, I \setminus i), i)$. If $i = \max(I)$ is neither a loop nor a coloop of M, then $\Delta_w(M, I) = \Delta_w(M \setminus i, I \setminus i) \cup \operatorname{cone}(\Delta_w(M/i, I \setminus i), i)$.

Recall: Broken Circuit Complex

Simplicial complex on [n] vertices:

 $\Delta_w(M,I) = \{\tau \subseteq [n] : \tau \text{ does not contain an } I\text{-broken circuit of } M\}.$

Theorem

For $\Delta_w(M, I)$ an *I*-broken circuit complex. If $i \in I$ is a loop of M, then $\Delta_w(M, I) = \emptyset$. If $i \in I$ is a coloop of M, then $\Delta_w(M, I) = \operatorname{cone}(\Delta_w(M/i, I \setminus i), i)$. If $i = \max(I)$ is neither a loop nor a coloop of M, then

$$\Delta_w(M, I) = \Delta_w(M \setminus i, I \setminus i) \cup \operatorname{cone}(\Delta_w(M/i, I \setminus i), i).$$

$$\langle \operatorname{in}_w(f_C) : C \in \mathcal{C}(M) \rangle = \mathcal{I}_{\Delta_w(M,I)}.$$

Recursion on the Degree

Recursion on the Degree

 $D(\mathcal{L}, I)$ denote the degree of the affine variety $inv_I(\mathcal{L})$.

Proposition

Proposition

If $i \in I$ is a loop of $M(\mathcal{L})$, then $inv_I(\mathcal{L})$ is empty and $D(\mathcal{L}, I) = 0$.

Proposition

If $i \in I$ is a loop of $M(\mathcal{L})$, then $inv_I(\mathcal{L})$ is empty and $D(\mathcal{L}, I) = 0$. If $i \in I$ is a co-loop of $M(\mathcal{L})$, then $D(\mathcal{L}, I) = D(\mathcal{L}/i, I \setminus i)$.

Proposition

If $i \in I$ is a loop of $M(\mathcal{L})$, then $\operatorname{inv}_{I}(\mathcal{L})$ is empty and $D(\mathcal{L}, I) = 0$. If $i \in I$ is a co-loop of $M(\mathcal{L})$, then $D(\mathcal{L}, I) = D(\mathcal{L}/i, I \setminus i)$. If $i \in I$ is neither a loop nor a coloop of $M(\mathcal{L})$ then

$$D(\mathcal{L}\setminus i, I\setminus i) + D(\mathcal{L}/i, I\setminus i) \leq D(\mathcal{L}, I).$$

Proposition

If $i \in I$ is a loop of $M(\mathcal{L})$, then $inv_I(\mathcal{L})$ is empty and $D(\mathcal{L}, I) = 0$. If $i \in I$ is a co-loop of $M(\mathcal{L})$, then $D(\mathcal{L}, I) = D(\mathcal{L}/i, I \setminus i)$. If $i \in I$ is neither a loop nor a coloop of $M(\mathcal{L})$ then

$$D(\mathcal{L}\setminus i, I\setminus i) + D(\mathcal{L}/i, I\setminus i) \leq D(\mathcal{L}, I).$$

Sketch of proof: Let \mathcal{J} be the homogenization of \mathcal{I} with respect to x_0 , the variety of $\operatorname{in}_w(\mathcal{J})$ contains the image in \mathbb{P}^n of both $\{0\} \times \operatorname{inv}_{I\setminus 1}(\mathcal{L}\setminus 1)$ and $\mathbb{A}^1(\mathbb{C}) \times \operatorname{inv}_{I\setminus 1}(\mathcal{L}/1)$.

Proposition

If $i \in I$ is a loop of $M(\mathcal{L})$, then $inv_I(\mathcal{L})$ is empty and $D(\mathcal{L}, I) = 0$. If $i \in I$ is a co-loop of $M(\mathcal{L})$, then $D(\mathcal{L}, I) = D(\mathcal{L}/i, I \setminus i)$. If $i \in I$ is neither a loop nor a coloop of $M(\mathcal{L})$ then

$$D(\mathcal{L}\setminus i, I\setminus i) + D(\mathcal{L}/i, I\setminus i) \leq D(\mathcal{L}, I).$$

Sketch of proof: Let \mathcal{J} be the homogenization of \mathcal{I} with respect to x_0 , the variety of $\operatorname{in}_w(\mathcal{J})$ contains the image in \mathbb{P}^n of both $\{0\} \times \operatorname{inv}_{I\setminus 1}(\mathcal{L}\setminus 1)$ and $\mathbb{A}^1(\mathbb{C}) \times \operatorname{inv}_{I\setminus 1}(\mathcal{L}/1)$. Since both these varieties have dimension equal to $\dim(\mathcal{L})$, the degree of

the variety of $in_w(\mathcal{J})$ is at least the sum of their degrees.

We homogenize and proceed by induction on the size of *I*. Let Δ_0 be the cone of the broken circuit complex Δ over the vertex 0, Δ_0 has at most $D(\mathcal{L}, I)$ facets.

We homogenize and proceed by induction on the size of *I*. Let Δ_0 be the cone of the broken circuit complex Δ over the vertex 0, Δ_0 has at most $D(\mathcal{L}, I)$ facets.

Assume, for induction, that $D(\mathcal{L}\setminus i, I\setminus i)$ and $D(\mathcal{L}/i, I\setminus i)$ are the number of facets of $\Delta_w(M\setminus i, I\setminus i)$ and $\Delta_w(M/i, I\setminus i)$, respectively.

We homogenize and proceed by induction on the size of *I*. Let Δ_0 be the cone of the broken circuit complex Δ over the vertex 0, Δ_0 has at most $D(\mathcal{L}, I)$ facets.

Assume, for induction, that $D(\mathcal{L}\setminus i, I\setminus i)$ and $D(\mathcal{L}/i, I\setminus i)$ are the number of facets of $\Delta_w(M\setminus i, I\setminus i)$ and $\Delta_w(M/i, I\setminus i)$, respectively.

Equality argument

 $\mathcal{I}_{\Delta_0} \subseteq in_{0,w}(\mathcal{J}) \subseteq \mathbb{C}[\mathbf{x}]$ are equidimensional homogeneous ideals of dimension d. \mathcal{I}_{Δ_0} is radical and $\deg(\mathcal{I}_{\Delta_0}) \leq \deg(\mathcal{J}) = D(\mathcal{L}, I)$, therefore \mathcal{I}_{Δ_0} and \mathcal{J} are equal.

Proposition

If $\mathcal{L} \subset \mathbb{C}^n$ is invariant under complex conjugation, then for any $u \in \mathbb{R}^n$, all of the intersection points of $\operatorname{inv}_I^-(\mathcal{L})$ with $\mathcal{L}^\perp + u$ are real.

Proposition

If $\mathcal{L} \subset \mathbb{C}^n$ is invariant under complex conjugation, then for any $u \in \mathbb{R}^n$, all of the intersection points of $\operatorname{inv}_I^-(\mathcal{L})$ with $\mathcal{L}^\perp + u$ are real.

Proposition

For generic $u \in \mathbb{R}^n$, the intersection points of $\operatorname{inv}_I^-(\mathcal{L})$ with $\mathcal{L}^\perp + u$ are the minima of the function

$$f(x) = \frac{1}{2} \sum_{j \notin I} x_j^2 - \sum_{j \in I} \log |x_j|$$

over the regions in the complement of the (affine) hyperplane arrangement $\{x_i = 0\}_{i \in I}$ in the affine linear space $\mathcal{L}^{\perp} + u$.

Thank you

