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Weighted Density Estimation

Given data: a point configuration X = {x1, . . . , xn} ∈ Rd

with weights w = (w1, . . . ,wn), where w1, . . . ,wn ≥ 0,
∑

wi = 1.

These are i.i.d. samples from an unknown probablity distribution p
on Rd . How to estimate p?

Use maximum likelihood estimation,
i.e. maximize the logarithm of the probability of observing the data:

maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is a density

Q: Does this optimization problem make sense?
A: No, because we can choose p arbitrarily close to

∑n
i=1 wiδxi .
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Estimating Model Parameters
Assume that p is a d-dimensional Gaussian distribution:

p(x) =
1(

2π det(Σ)
)d · exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
.

Mean µ ∈ Rd and covariance matrix Σ ∈ Sym2(Rd) are unknown.

MLE is easy: µ̂ =
∑n

i=1 wixi and Σ̂ =
∑n

i=1 wi (x − µ̂)(x − µ̂)T .



Non-Parametric Statistics

We do not assume a model with finitely many parameters.
The fewer assumptions the better. This leads to

Shape-constrained maximum likelihood estimation

I monotonically decreasing densities: Grenander 1956, Rao 1969

I convex densities: Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001

I log-concave densities: Cule, Samworth, and Stewart 2008

I generalized additive models with shape constraints: Chen and Samworth 2016

Gaussian densities are log-concave:
−1

2 (x − µ)TΣ−1(x − µ) is a concave function



Our Optimization Problem

Maximize the log-likelihood of the given sample (X ,w)
over all integrable functions p : Rd → R≥0 such that

log(p) is concave and
∫
Rd p(x)dx = 1.

This problem was solved for uniform weights w = 1
n

(1, 1, . . . , 1) by

M. Cule, R. Samworth and M. Stewart:
Maximum likelihood estimation of a multi-dimensional log-concave density,

J. R. Stat. Soc. Ser. B Stat. Methodol. 72 (2010) 545–607.

M. Cule, R.B. Gramacy and R. Samworth: LogConcDEAD: an R package for
maximum likelihood estimation of a multivariate log-concave density,

J. Statist. Software 29 (2009) Issue 2.

We extend to arbitrary w and develop the link to geometric combinatorics:

J. De Loera, J. Rambau and F. Santos: Triangulations. Structures for Algorithms and
Applications, Algorithms and Computation in Mathematics 25, Springer Berlin, 2010.
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Maximum Likelihood Estimation

Theorem
A log-concave maximum likelihood estimate p̂ exists for all (X ,w).
It is unique with probability 1. The concave function log(p̂) is a
tent function supported on the convex polytope P = conv(X ).

Log-concave density estimation 3

Fig. 1. The ‘tent-like’ structure of the graph of the logarithm of the maximum likelihood estimator for bivariate
data.

(2009) have studied its theoretical properties. Rufibach (2007) compared di↵erent algorithms for
computing the univariate estimator, including the iterative convex minorant algorithm (Groeneboom
and Wellner, 1992; Jongbloed, 1998), and three others. Dümbgen, Hüsler and Rufibach (2007)
also present an Active Set algorithm, which has similarities with the vertex direction and vertex
reduction algorithms described in Groeneboom, Jongbloed and Wellner (2008). Walther (2010)
provides a nice recent review article on inference and modelling with log-concave densities. Other
recent related work includes Seregin and Wellner (2009), Schuhmacher, Hüsler and Dümbgen (2010),
Schuhmacher and Dümbgen (2010) and Koenker and Mizera (2010). For univariate data, it is also
well-known that there exist maximum likelihood estimators of a non-increasing density supported on
[0,1) (Grenander, 1956) and of a convex, decreasing density (Groeneboom, Jongbloed and Wellner,
2001).

Figure 1 gives a diagram illustrating the structure of the maximum likelihood estimator on the
logarithmic scale. This structure is most easily visualised for two-dimensional data, where one can
imagine associating a ‘tent pole’ with each observation, extending vertically out of the plane. For
certain tent pole heights, the graph of the logarithm of the maximum likelihood estimator can be
thought of as the roof of a taut tent stretched over the tent poles. The fact that the logarithm of
the maximum likelihood estimator is of this ‘tent function’ form constitutes part of the proof of its
existence and uniqueness.

In Sections 3.1 and 3.2, we discuss the computational problem of how to adjust the n tent pole
heights so that the corresponding tent functions converge to the logarithm of the maximum likelihood
estimator. One reason that this computational problem is so challenging in more than one dimension
is the fact that it is di�cult to describe the set of tent pole heights that correspond to concave
functions. The key observation, discussed in Section 3.1, is that it is possible to minimise a modified
objective function that is convex (though non-di↵erentiable). This allows us to apply the powerful
non-di↵erentiable convex optimisation methodology of the subgradient method (Shor, 1985) and a
variant called Shor’s r-algorithm, which has been implemented by Kappel and Kuntsevich (2000).

As an illustration of the estimates obtained, Figure 2 presents plots of the maximum likelihood
estimator, and its logarithm, for 1000 observations from a standard bivariate normal distribution.

Tent function means: piecewise linear and concave, supported on a

regular polyhedral subdivision of the configuration X of n points in Rd .



Tent Functions

Given points X = {x1, . . . , xn} and heights y1, . . . , yn at these points, the tent function
hX ,y : Rd → R is the smallest concave function such that hX ,y (xi ) ≥ yi for all i . Thus,

p̂ = exp(hX ,y ) for some height vector y ∈ Rn.

X1

X2
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X5

X6
X7
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also present an Active Set algorithm, which has similarities with the vertex direction and vertex
reduction algorithms described in Groeneboom, Jongbloed and Wellner (2008). Walther (2010)
provides a nice recent review article on inference and modelling with log-concave densities. Other
recent related work includes Seregin and Wellner (2009), Schuhmacher, Hüsler and Dümbgen (2010),
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objective function that is convex (though non-di↵erentiable). This allows us to apply the powerful
non-di↵erentiable convex optimisation methodology of the subgradient method (Shor, 1985) and a
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Two equivalent Optimization Problems:

maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is a density

and p is log-concave.

INFINITE DIMENSIONAL

maximizey∈Rn

n∑
i=1

wiyi

s.t.

∫
exp(hX ,y (t))dt = 1

FINITE DIMENSIONAL



LogConcDEAD

Example
Let d = 2, n = 6, w = 1

6
(1, 1, 1, 1, 1, 1), and fix the point configuration

X =
(

(0, 0) , (100, 0) , (0, 100) , (22, 37) , (43, 22) , (36, 41)
)
.

0 20 40 60 80 100
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Log density estimate

The optimal log-concave density p̂ for the six data points in X with unit weights.

Computed with the R package of Cule, Gramacy and Samworth.



LogConcDEAD

Example
Let d = 2, n = 6, w = 1

12
(2, 2, 2, 1, 4, 1), and fix the point configuration

X =
(

(0, 0) , (100, 0) , (0, 100) , (22, 37) , (43, 22) , (36, 41)
)
.

0 20 40 60 80 100

0
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Log density estimate
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4

The optimal log-concave density p̂ for the six data points in X with non-unit weights.

Computed with the R package of Cule, Gramacy and Samworth.



Secondary Polytope

The secondary polytope Σ(X ) has dimension n−d−1 but lives in
Rn. Its faces are in bijection with the regular subdivisions of X .
The vertices of Σ(X ) correspond to regular triangulations of X .25/01/17 05:44
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I.M. Gel’fand, M.M. Kapranov and A.V. Zelevinsky: Discriminants,
Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994.



Samworth Body
Log-concave density estimation 3

Fig. 1. The ‘tent-like’ structure of the graph of the logarithm of the maximum likelihood estimator for bivariate
data.

(2009) have studied its theoretical properties. Rufibach (2007) compared di↵erent algorithms for
computing the univariate estimator, including the iterative convex minorant algorithm (Groeneboom
and Wellner, 1992; Jongbloed, 1998), and three others. Dümbgen, Hüsler and Rufibach (2007)
also present an Active Set algorithm, which has similarities with the vertex direction and vertex
reduction algorithms described in Groeneboom, Jongbloed and Wellner (2008). Walther (2010)
provides a nice recent review article on inference and modelling with log-concave densities. Other
recent related work includes Seregin and Wellner (2009), Schuhmacher, Hüsler and Dümbgen (2010),
Schuhmacher and Dümbgen (2010) and Koenker and Mizera (2010). For univariate data, it is also
well-known that there exist maximum likelihood estimators of a non-increasing density supported on
[0,1) (Grenander, 1956) and of a convex, decreasing density (Groeneboom, Jongbloed and Wellner,
2001).

Figure 1 gives a diagram illustrating the structure of the maximum likelihood estimator on the
logarithmic scale. This structure is most easily visualised for two-dimensional data, where one can
imagine associating a ‘tent pole’ with each observation, extending vertically out of the plane. For
certain tent pole heights, the graph of the logarithm of the maximum likelihood estimator can be
thought of as the roof of a taut tent stretched over the tent poles. The fact that the logarithm of
the maximum likelihood estimator is of this ‘tent function’ form constitutes part of the proof of its
existence and uniqueness.

In Sections 3.1 and 3.2, we discuss the computational problem of how to adjust the n tent pole
heights so that the corresponding tent functions converge to the logarithm of the maximum likelihood
estimator. One reason that this computational problem is so challenging in more than one dimension
is the fact that it is di�cult to describe the set of tent pole heights that correspond to concave
functions. The key observation, discussed in Section 3.1, is that it is possible to minimise a modified
objective function that is convex (though non-di↵erentiable). This allows us to apply the powerful
non-di↵erentiable convex optimisation methodology of the subgradient method (Shor, 1985) and a
variant called Shor’s r-algorithm, which has been implemented by Kappel and Kuntsevich (2000).

As an illustration of the estimates obtained, Figure 2 presents plots of the maximum likelihood
estimator, and its logarithm, for 1000 observations from a standard bivariate normal distribution.

The support function of the secondary polytope Σ(X ) is
the p.l. function that measures the volume under the tent:

Rn → R, y 7→
∫
P
hX ,y (t)dt.

The convex polyhedron dual to the secondary is unbounded:

Σ(X )∗ =
{
y ∈ Rn :

∫
P
hX ,y (t)dt ≤ 1

}
.

The Samworth body is the following continuous analogue:

S(X ) =
{
y ∈ Rn :

∫
P
exp(hX ,y (t))dt ≤ 1

}
.

Proposition
The Samworth body S(X ) is a full-dimensional closed convex set in Rn.



Log-Concave Density Estimation

.... is Linear Programming over the Samworth body:

Maximize w · y subject to y ∈ S(X ).

0 20 40 60 80 100
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80
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0

Log density estimate

Proposition

This is equivalent to the unconstrained optimization problem

Maximize w · y −
∫
P exp(hX ,y (t))dt over all y ∈ Rn

Interpretation: the optimal value function of our convex optimization problem is the
Legendre-Fenchel transform of the convex function y 7→

∫
P exp(hX ,y (t))dt.



Barvinok meets Samworth

Lemma (Barvinok 1993)

Fix linear function ` : Rd → R and a d-simplex σ. Then∫
σ

exp(`(t))dt = vol(σ)
d∑

i=0

exp(yi )
∏
j 6=i

(yi − yj)
−1,

where y0, y1, . . . , yd are the values of ` at the vertices of σ.

Theorem (Cule, Samworth, Stewart 2008)

Let y ∈ Rn such that hX ,y induces a triangulation ∆ of X . Then∫
C

exp(hX ,y (t))dt =
∑
σ∈∆

∑
i∈σ

vol(σ) exp(yi )∏
j∈σ\i (yi − yj)

.

Corollary

On the secondary cone of a fixed triangulation ∆, the Samworth
body S(X ) consists of all y such that the right hand side is ≤ 1.



Every Regular Subdivision Arises

Theorem
For every regular subdivision ∆ of X , there exists an open subset
U∆ ⊂ Rn such that, for every w ∈ U∆, the optimal solution p̂ to
the optimization problem for (X ,w) gives rise to the subdivision ∆.



Six Points in the Plane

25/01/17 05:44
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Fix the configuration
X = {(0, 0), (1, 0), (2, 1), (2, 2), (1, 2), (0, 1)} 1 2

3

45

6

We sampled 100,000 vectors uniformly from the simplex {w ∈ R6
≥0 :

∑6
i=1 = 1}.

For each w , we computed the optimal y and the subdivision it induces:

∅ 35 46 24 15 13 26 25 14 36
30.5 5.95 5.85 5.84 5.83 5.75 5.70 3.91 3.90 3.87

13 15 26 46 15 35 13 35 24 26 24 46 13 14 35 36 14 24 26 36 14 46 25 35 15 25
1.23 1.21 1.21 1.20 1.16 1.14 0.96 0.92 0.92 0.92 0.92 0.90 0.90

25 26 14 15 36 46 24 25 13 36 13 46 26 35 15 24 13 14 15 13 15 35 14 24 46 24 26 46
0.89 0.89 0.87 0.87 0.84 0.82 0.77 0.70 0.25 0.24 0.23 0.22

15 25 35 26 36 46 13 35 36 24 25 26 13 36 46 25 26 35 15 24 25 14 15 24 13 14 46 26 35 36
0.22 0.21 0.20 0.18 0.18 0.16 0.15 0.15 0.15 0.14



Every Tent Function Arises

Lemma
Let ∆ be a regular triangulation, given by hX ,y∗ for some
y∗ ∈ ∂S(X ). There exist weights w ∈ Rn

≥0 that induce y∗.

Proof: The vector y∗ is the global maximizer of the function

n∑
i=1

wiyi −
∫
exp(hX ,y (t))dt.

By taking the partial derivative with respect to yi , we find

wi =
∂

∂yi

∫
exp(hX ,y∗(t))dt

=
∑
σ∈∆:
i∈σ

vol(σ)exp(y∗i )H(y∗j − y∗i , j ∈ σ\i),

where H(u1, . . . , ud) is a certain explicit function of d arguments.



A Symmetric Function

Proposition

The following expressions define the same function H : Rd → R:

• H = (−1)d
1 + u−1

1 + · · ·+ u−1
d

u1u2 · · · ud
+

d∑
j=1

euj

u2
j

∏
k 6=j(uj − uk)

• H =
∞∑
r=0

hr (u1, . . . , ud)

(r + d + 1)!

• H =

∫
Σd

(
1−

d∑
i=1

ti

)
exp

(
d∑

i=1

ui ti

)
dt1 . . . dtd .

This function is positive, increasing in each argument, and convex.

Here hr is the homogeneous symmetric function, and Σd is the standard simplex.



Every Tent Function Arises

We characterize the normal cones of the Samworth body:

Theorem
Fix a vector y ∈ ∂S(X ), let ∆ be the regular subdivision of X that
is induced by hX ,y and ∆1, . . . ,∆m all regular triangulations of X
which refine ∆. Write w∆1 , . . . ,w∆m for their weight vectors in Rn

with i-th coordinates seen two slides ago.

A vector of weights w ∈ Rn
>0 induces the heights y if and only if

w ∈ Cone (w∆1 , . . . ,w∆m).

Corollary

Fix y∗ = (c , c , . . . , c), where c = −log(vol(P)), so that exp(hX ,y )

is a probability density. Then w∆i is precisely the vertex of the
secondary polytope Σ(X ) given by the regular triangulation ∆i .



Four Points in the Plane

Let x1, x2, x3, x4 ∈ R2 be in convex position. Then X has two triangulations:

1

2

3

4

1

2

3

4

∆1 = {124, 234} ∆2 = {123, 134}

Pick y ∈ R4. If hX ,y induces ∆1, then the weight vector w∆1 has coordinates

w∆1
1 = v124e

y1H(y2 − y1, y4 − y1)

w∆1
2 = v124e

y2H(y1 − y2, y4 − y2) + v234e
y2H(y3 − y2, y4 − y2)

w∆1
3 = v234e

y3H(y2 − y3, y4 − y3)

w∆1
4 = v124e

y4H(y1 − y4, y2 − y4) + v234e
y4H(y2 − y4, y3 − y4).

There is an analogous vector w∆2 for the other triangulation. If hX ,y induces the

flat subdivision ∆ then w can be any positive linear combination of w∆1 and w∆2 .



Convex Bodies

1

2

3

4

1

2

3

4

1

2

3

4

∆1 ∆ ∆2

Samworth body and its dual

∆1

∆2

∆
w∆1

w∆2

w∆

The secondary fan of X and the secondary polytope of X .



Unit weights

Theorem
Let X be a configuration of n = d + 2 points that span Rd . If w = 1

n
(1, . . . , 1),

then the optimal density p̂ is log-linear, and the optimal subdivision is trivial.

Example
Unit weights on the following configuration of five points

X = {(0, 0), (40, 0), (20, 40), (17, 10), (21, 15)}

0 1 2 3 4

0
1

2
3

4

Log density estimate

Theorem
For any integer d ≥ 2, there exists a configuration of n = d + 3 points in Rd

for which the optimal subdivision with respect to unit weights is non-trivial.



Experiments

We sampled six i.i.d. points in R2 from four different distributions:

I Gaussian N (0, 1)

I Uniform

I Circular: (Ua
1 cos(2πU2),Ua

1 sin(2πU2)), where U1,U2 are i.i.d uniform on [0, 1], and a = 0.3

I Circular: (Ua
1 cos(2πU2),Ua

1 sin(2πU2)), where U1,U2 are i.i.d uniform on [0, 1], and a = 0.1

Subdivision: number of Convex Gaussian Uniform Circular Circular
3-gons 4-gons 5-gons 6-gons hull N (0, 1) a = 0.5 a = 0.3 a = 0.1

1 0 0 0 3 948 533 257 34
0 1 0 0 4 8781 6719 4596 1507
0 0 1 0 5 8209 9743 10554 8504
0 0 0 1 6 1475 2805 4495 9887
2 0 0 0 4 8 3 6 7
1 1 0 0 5 1 2 1 2
3 0 0 0 3 6 2 2 1
2 1 0 0 4 39 16 4 7
2 0 1 0 5 1 1 0 1
1 2 0 0 5 1 0 1 6
4 0 0 0 4 1 0 0 0
3 1 0 0 3 114 38 10 1
3 0 1 0 4 39 20 9 2
2 2 0 0 4 59 19 16 9
5 0 0 0 3 3 0 0 0
4 1 0 0 4 1 0 0 0
4 0 1 0 3 90 27 8 1
3 2 0 0 3 120 32 11 0
5 1 0 0 3 50 11 3 0
7 0 0 0 3 2 1 0 0



Open Problems
∆1

∆2

∆

w∆1

w∆2

w∆

I Design a test statistic for log-concavity based on optimal ∆.

I What is the smallest size n of a configuration X in Rd whose
optimal subdivision with unit weights has at least c cells?

(e.g. we showed n = d + 3 for c = 2, d ≥ 2.)

I Which subdivisions are realizable by points with unit weights?

I For a fixed w and a fixed combinatorial type of subdivision ∆,
study the semianalytic set of all configurations X such that ∆
is the optimal subdivision for the data (X ,w).


