Geometry of Log-Concave Density Estimation

Bernd Sturmfels *MPI Leipzig and UC Berkeley*

joint paper with Elina Robeva and Caroline Uhler

Weighted Density Estimation

Given data: a point configuration $X = \{x_1, \dots, x_n\} \in \mathbb{R}^d$ with weights $w = (w_1, \dots, w_n)$, where $w_1, \dots, w_n \geq 0$, $\sum w_i = 1$.

These are i.i.d. samples from an unknown probablity distribution p on \mathbb{R}^d . How to estimate p?

Weighted Density Estimation

Given data: a point configuration $X = \{x_1, \dots, x_n\} \in \mathbb{R}^d$ with weights $w = (w_1, \dots, w_n)$, where $w_1, \dots, w_n \geq 0$, $\sum w_i = 1$.

These are i.i.d. samples from an unknown probablity distribution p on \mathbb{R}^d . How to estimate p? Use maximum likelihood estimation, i.e. maximize the logarithm of the probability of observing the data:

maximize_p
$$\sum_{i=1}^{n} w_i \log(p(x_i))$$
s.t. p is a density

Weighted Density Estimation

Given data: a point configuration $X = \{x_1, \dots, x_n\} \in \mathbb{R}^d$ with weights $w = (w_1, \dots, w_n)$, where $w_1, \dots, w_n \geq 0$, $\sum w_i = 1$.

These are i.i.d. samples from an unknown probablity distribution p on \mathbb{R}^d . How to estimate p? Use maximum likelihood estimation, i.e. maximize the logarithm of the probability of observing the data:

$$\begin{array}{ll}
\text{maximize}_p & \sum_{i=1}^n w_i \log(p(x_i)) \\
\text{s.t.} & p \text{ is a density}
\end{array}$$

Q: Does this optimization problem make sense?

A: No, because we can choose p arbitrarily close to $\sum_{i=1}^{n} w_i \delta_{x_i}$.

Estimating Model Parameters

Assume that p is a d-dimensional Gaussian distribution:

$$p(x) = \frac{1}{(2\pi \det(\Sigma))^d} \cdot \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right).$$

Mean $\mu \in \mathbb{R}^d$ and covariance matrix $\Sigma \in \operatorname{Sym}_2(\mathbb{R}^d)$ are unknown.

MLE is easy: $\hat{\mu} = \sum_{i=1}^n w_i x_i$ and $\hat{\Sigma} = \sum_{i=1}^n w_i (x - \hat{\mu}) (x - \hat{\mu})^T$.

Non-Parametric Statistics

We do **not** assume a model with finitely many parameters.

The fewer assumptions the better.

This leads to

Shape-constrained maximum likelihood estimation

- monotonically decreasing densities: Grenander 1956, Rao 1969
- convex densities: Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001
- log-concave densities: Cule, Samworth, and Stewart 2008
- generalized additive models with shape constraints: Chen and Samworth 2016

Gaussian densities are log-concave:

 $-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)$ is a concave function

Our Optimization Problem

Maximize the log-likelihood of the given sample (X, w) over all integrable functions $p: \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ such that $\log(p)$ is concave and $\int_{\mathbb{R}^d} p(x) dx = 1$.

Our Optimization Problem

Maximize the log-likelihood of the given sample (X, w) over all integrable functions $p: \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ such that $\log(p)$ is concave and $\int_{\mathbb{R}^d} p(x) dx = 1$.

This problem was solved for uniform weights $w = \frac{1}{n}(1, 1, ..., 1)$ by

M. Cule, R. Samworth and M. Stewart:

Maximum likelihood estimation of a multi-dimensional log-concave density,

L. R. Stat. Soc. Ser. R. Stat. Methodol. 72 (2010)

J. R. Stat. Soc. Ser. B Stat. Methodol. **72** (2010) 545–607.

M. Cule, R.B. Gramacy and R. Samworth: LogConcDEAD: an R package for maximum likelihood estimation of a multivariate log-concave density,

J. Statist. Software **29** (2009) Issue 2.

We extend to arbitrary w and develop the link to geometric combinatorics:

J. De Loera, J. Rambau and F. Santos: *Triangulations. Structures for Algorithms and Applications*, Algorithms and Computation in Mathematics **25**, Springer Berlin, 2010.

Maximum Likelihood Estimation

Theorem

A log-concave maximum likelihood estimate \hat{p} exists for all (X, w). It is unique with probability 1. The concave function $log(\hat{p})$ is a tent function supported on the convex polytope P = conv(X).

Tent function means: piecewise linear and concave, supported on a regular polyhedral subdivision of the configuration X of a points in \mathbb{R}^d .

Tent Functions

Given points $X = \{x_1, \dots, x_n\}$ and heights y_1, \dots, y_n at these points, the *tent function* $h_{X,y} : \mathbb{R}^d \to \mathbb{R}$ is the smallest concave function such that $h_{X,y}(x_i) \ge y_i$ for all i. Thus,

$$\hat{\rho} = \exp(h_{X,y})$$
 for some height vector $y \in \mathbb{R}^n$.

Two equivalent Optimization Problems:

maximize_p
$$\sum_{i=1}^{n} w_i \log(p(x_i))$$
s.t. p is a density
and p is log-concave.

$$\mathsf{maximize}_{y \in \mathbb{R}^n} \quad \sum_{i=1}^n w_i y_i$$
 $\mathsf{s.t.} \quad \int \mathsf{exp}(h_{X,y}(t)) dt = 1$

INITE DIMENSIONAL

LogConcDEAD

Example

Let d = 2, n = 6, $w = \frac{1}{6}(1, 1, 1, 1, 1, 1)$, and fix the point configuration

$$X = ((0,0), (100,0), (0,100), (22,37), (43,22), (36,41)).$$

The optimal log-concave density \hat{p} for the six data points in X with unit weights.

Computed with the \boldsymbol{R} package of Cule, Gramacy and Samworth.

LogConcDEAD

Example

Let d = 2, n = 6, $w = \frac{1}{12}(2, 2, 2, 1, 4, 1)$, and fix the point configuration

$$X = ((0,0), (100,0), (0,100), (22,37), (43,22), (36,41)).$$

The optimal log-concave density \hat{p} for the six data points in X with non-unit weights.

Computed with the R package of Cule, Gramacy and Samworth.

Secondary Polytope

The secondary polytope $\Sigma(X)$ has dimension n-d-1 but lives in \mathbb{R}^n . Its faces are in bijection with the regular subdivisions of X. The vertices of $\Sigma(X)$ correspond to regular triangulations of X.

I.M. Gel'fand, M.M. Kapranov and A.V. Zelevinsky: *Discriminants, Resultants and Multidimensional Determinants*, Birkhäuser, Boston, 1994.

Samworth Body

The **support function** of the secondary polytope $\Sigma(X)$ is the p.l. function that measures the volume under the tent:

$$\mathbb{R}^n \to \mathbb{R}, \quad y \mapsto \int_P h_{X,y}(t)dt.$$

The convex polyhedron dual to the secondary is unbounded:

$$\Sigma(X)^* = \{ y \in \mathbb{R}^n : \int_P h_{X,y}(t)dt \leq 1 \}.$$

The *Samworth body* is the following continuous analogue:

$$\mathcal{S}(X) = \{ y \in \mathbb{R}^n : \int_P \exp(h_{X,y}(t)) dt \leq 1 \}.$$

Proposition

The Samworth body S(X) is a full-dimensional closed convex set in \mathbb{R}^n .

Log-Concave Density Estimation

.... is Linear Programming over the Samworth body:

Maximize $w \cdot y$ subject to $y \in \mathcal{S}(X)$.

Proposition

This is equivalent to the unconstrained optimization problem

Maximize
$$w \cdot y - \int_{P} \exp(h_{X,y}(t)) dt$$
 over all $y \in \mathbb{R}^n$

Interpretation: the optimal value function of our convex optimization problem is the *Legendre-Fenchel transform* of the convex function $y \mapsto \int_P \exp(h_{X,y}(t)) dt$.

Barvinok meets Samworth

Lemma (Barvinok 1993)

Fix linear function $\ell: \mathbb{R}^d \to \mathbb{R}$ and a d-simplex σ . Then

$$\int_{\sigma} \exp(\ell(t)) dt = \operatorname{vol}(\sigma) \sum_{i=0}^{d} \exp(y_i) \prod_{j \neq i} (y_i - y_j)^{-1},$$

where y_0, y_1, \ldots, y_d are the values of ℓ at the vertices of σ .

Theorem (Cule, Samworth, Stewart 2008)

Let $y \in \mathbb{R}^n$ such that $h_{X,y}$ induces a triangulation Δ of X. Then

$$\int_{C} \exp(h_{X,y}(t)) dt = \sum_{\sigma \in \Delta} \sum_{i \in \sigma} \frac{\operatorname{vol}(\sigma) \exp(y_i)}{\prod_{j \in \sigma \setminus i} (y_i - y_j)}.$$

Corollary

On the secondary cone of a fixed triangulation Δ , the Samworth body $\mathcal{S}(X)$ consists of all y such that the right hand side is ≤ 1 .

Every Regular Subdivision Arises

Theorem

For every regular subdivision Δ of X, there exists an open subset $\mathcal{U}_{\Delta} \subset \mathbb{R}^n$ such that, for every $w \in \mathcal{U}_{\Delta}$, the optimal solution \hat{p} to the optimization problem for (X, w) gives rise to the subdivision Δ .

Six Points in the Plane

Fix the configuration $X = \{(0, 0), (1, 0), (2, 1)\}$

$$X = \{(0,0), (1,0), (2,1), (2,2), (1,2), (0,1)\}$$

We sampled 100,000 vectors uniformly from the simplex $\{w \in \mathbb{R}^6_{\geq 0} : \sum_{i=1}^6 = 1\}$. For each w, we computed the optimal y and the subdivision it induces:

	∅ 30.5	35 5.95	46 5.85	24 5.84	5.8 5.8		13 5.75	26 5.70	25 3.91	14 3.90	36 3.87	
13 15	26 46	15 35	13 35	24 26	24 46	13 14		14 24	26 36	14 46	25 35	15 25
1.23	1.21	1.21	1.20	1.16	1.14	0.96		0.92	0.92	0.92	0.90	0.90
25 26	14 15	36 46	24 25	13 36	13 46	26 35	15 24	13 14 15	13 15		4 24 46	24 26 46
0.89	0.89	0.87	0.87	0.84	0.82	0.77	0.70	0.25	0.2		0.23	0.22
15 25 35 0.22	26 36 0.2		3 35 36 0.20	24 25 26 0.18	13 36 0.1		25 26 35 0.16	15 24 25 0.15	14 15 2 0.15		3 14 46 0.15	26 35 36 0.14

Every Tent Function Arises

Lemma

Let Δ be a regular triangulation, given by h_{X,v^*} for some $y^* \in \partial \mathcal{S}(X)$. There exist weights $w \in \mathbb{R}^n_{>0}$ that induce y^* .

Proof: The vector y^* is the global maximizer of the function

$$\sum_{i=1}^{n} w_i y_i - \int exp(h_{X,y}(t)) dt.$$

By taking the partial derivative with respect to y_i , we find

$$w_{i} = \frac{\partial}{\partial y_{i}} \int exp(h_{X,y^{*}}(t))dt$$

$$= \sum_{\substack{\sigma \in \Delta: \\ i \in \sigma}} vol(\sigma)exp(y_{i}^{*})H(y_{j}^{*} - y_{i}^{*}, j \in \sigma \setminus i),$$

where $H(u_1,\ldots,u_d)$ is a certain explicit function of d arguments.

A Symmetric Function

Proposition

The following expressions define the same function $H: \mathbb{R}^d \to \mathbb{R}$:

•
$$H = (-1)^d \frac{1 + u_1^{-1} + \dots + u_d^{-1}}{u_1 u_2 \dots u_d} + \sum_{j=1}^d \frac{e^{u_j}}{u_j^2 \prod_{k \neq j} (u_j - u_k)}$$

$$\bullet \quad H = \sum_{r=0}^{\infty} \frac{h_r(u_1,\ldots,u_d)}{(r+d+1)!}$$

•
$$H = \int_{\Sigma_d} \left(1 - \sum_{i=1}^d t_i\right) \exp\left(\sum_{i=1}^d u_i t_i\right) dt_1 \dots dt_d.$$

This function is positive, increasing in each argument, and convex.

Here h_r is the homogeneous symmetric function, and Σ_d is the standard simplex.

Every Tent Function Arises

We characterize the normal cones of the Samworth body:

Theorem

Fix a vector $y \in \partial S(X)$, let Δ be the regular subdivision of X that is induced by $h_{X,y}$ and $\Delta_1, \ldots, \Delta_m$ all regular triangulations of X which refine Δ . Write $w^{\Delta_1}, \ldots, w^{\Delta_m}$ for their weight vectors in \mathbb{R}^n with i-th coordinates seen two slides ago.

A vector of weights $w \in \mathbb{R}^n_{>0}$ induces the heights y if and only if

$$w \in Cone(w^{\Delta_1}, \ldots, w^{\Delta_m}).$$

Corollary

Fix $y^* = (c, c, ..., c)$, where $c = -\log(\operatorname{vol}(P))$, so that $\exp(h_{X,y})$ is a probability density. Then w^{Δ_i} is precisely the vertex of the secondary polytope $\Sigma(X)$ given by the regular triangulation Δ_i .

Four Points in the Plane

Let $x_1, x_2, x_3, x_4 \in \mathbb{R}^2$ be in convex position. Then X has two triangulations:

Pick
$$y \in \mathbb{R}^4$$
. If $h_{X,y}$ induces Δ_1 , then the weight vector w^{Δ_1} has coordinates
$$w_1^{\Delta_1} = v_{124} e^{y_1} H(y_2 - y_1, y_4 - y_1)$$

$$w_2^{\Delta_1} = v_{124} e^{y_2} H(y_1 - y_2, y_4 - y_2) + v_{234} e^{y_2} H(y_3 - y_2, y_4 - y_2)$$

$$w_3^{\Delta_1} = v_{234} e^{y_3} H(y_2 - y_3, y_4 - y_3)$$

There is an analogous vector w^{Δ_2} for the other triangulation. If $h_{X,y}$ induces the flat subdivision Δ then w can be any positive linear combination of w^{Δ_1} and w^{Δ_2} .

 $w_4^{\Delta_1} = v_{124}e^{y_4}H(y_1 - y_4, y_2 - y_4) + v_{234}e^{y_4}H(y_2 - y_4, y_3 - y_4).$

Convex Bodies

Samworth body

and

its dual

The **secondary fan** of X

and

the **secondary polytope** of X.

Unit weights

Theorem

Let X be a configuration of n=d+2 points that span \mathbb{R}^d . If $w=\frac{1}{n}(1,\ldots,1)$, then the optimal density $\hat{\rho}$ is log-linear, and the optimal subdivision is trivial.

Example

Unit weights on the following configuration of five points

$$X = \{(0,0), (40,0), (20,40), (17,10), (21,15)\}$$

Theorem

For any integer $d \ge 2$, there exists a configuration of n = d + 3 points in \mathbb{R}^d for which the optimal subdivision with respect to unit weights is non-trivial.

Experiments

We sampled six i.i.d. points in \mathbb{R}^2 from four different distributions:

- Gaussian $\mathcal{N}(0,1)$
- **▶** Uniform
- Circular: $(U_1^a \cos(2\pi U_2), U_1^a \sin(2\pi U_2))$, where U_1, U_2 are i.i.d uniform on [0, 1], and a = 0.3
- Circular: $(U_1^a \cos(2\pi U_2), U_1^a \sin(2\pi U_2))$, where U_1, U_2 are i.i.d uniform on [0, 1], and a = 0.1

	Subdivision	: number o	f	Convex	Gaussian	Uniform	Circular	Circular
3-gons	4-gons	5-gons	6-gons	hull	$\mathcal{N}(0,1)$	a = 0.5	a = 0.3	a = 0.1
1	0	0	0	3	948	533	257	34
0	1	0	0	4	8781	6719	4596	1507
0	0	1	0	5	8209	9743	10554	8504
0	0	0	1	6	1475	2805	4495	9887
2	0	0	0	4	8	3	6	7
1	1	0	0	5	1	2	1	2
3	0	0	0	3	6	2	2	1
2	1	0	0	4	39	16	4	7
2	0	1	0	5	1	1	0	1
1	2	0	0	5	1	0	1	6
4	0	0	0	4	1	0	0	0
3	1	0	0	3	114	38	10	1
3	0	1	0	4	39	20	9	2
2	2	0	0	4	59	19	16	9
5	0	0	0	3	3	0	0	0
4	1	0	0	4	1	0	0	0
4	0	1	0	3	90	27	8	1
3	2	0	0	3	120	32	11	0
5	1	0	0	3	50	11	3	0
7	0	0	0	3	2	1	0	0

Open Problems

- ▶ Design a **test statistic** for log-concavity based on optimal Δ .
- What is the smallest size n of a configuration X in \mathbb{R}^d whose optimal subdivision with unit weights has at least c cells? (e.g. we showed n = d + 3 for $c = 2, d \ge 2$.)
- Which subdivisions are realizable by points with unit weights?
- For a fixed w and a fixed combinatorial type of subdivision Δ , study the semianalytic set of all configurations X such that Δ is the optimal subdivision for the data (X, w).