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Weighted Density Estimation

Given data: a point configuration X = {xq,...,x,} € R?
with weights w = (w, ..., w,), where wq,...,w, >0, > w; = 1.

These are i.i.d. samples from an unknown probablity distribution p
on R?. How to estimate p?
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Weighted Density Estimation

Given data: a point configuration X = {xq,...,x,} € R?
with weights w = (w, ..., w,), where wq,...,w, >0, > w; = 1.

These are i.i.d. samples from an unknown probablity distribution p
on RY. How to estimate p? Use maximum likelihood estimation,
i.e. maximize the logarithm of the probability of observing the data:

n
maximizep Z w; log(p(x;))
i=1

s.t. p is a density

Q: Does this optimization problem make sense?
A: No, because we can choose p arbitrarily close to Y "_; w;dx,.



Estimating Model Parameters
Assume that p is a d-dimensional Gaussian distribution:
1

p(x) = m . eXP<—;(X — ) TE (x — N))'

Mean 1 € RY and covariance matrix ¥ € Sym,(R9) are unknown.




Non-Parametric Statistics

We do not assume a model with finitely many parameters.
The fewer assumptions the better. This leads to

Shape-constrained maximum likelihood estimation

monotonically decreasing densities: Grenander 1956, Rao 1969
convex densities: Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001

log-concave densities: Cule, Samworth, and Stewart 2008
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generalized additive models with shape constraints: Chen and Samworth 2016

Gaussian densities are log-concave:
1

—3(x =) TE"H(x — p) is a concave function



Our Optimization Problem

Maximize the log-likelihood of the given sample (X, w)
over all integrable functions p : RY — R>g such that
log(p) is concave and [y p(x)dx = 1.
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Maximize the log-likelihood of the given sample (X, w)
over all integrable functions p : RY — R>g such that
log(p) is concave and [y p(x)dx = 1.

. . . 1
This problem was solved for uniform weights w = +(1,1,...,1) by

M. Cule, R. Samworth and M. Stewart:
Maximum likelihood estimation of a multi-dimensional log-concave density,
J. R. Stat. Soc. Ser. B Stat. Methodol. 72 (2010) 545-607.

M. Cule, R.B. Gramacy and R. Samworth: LogConcDEAD: an R package for

maximum likelihood estimation of a multivariate log-concave density,
J. Statist. Software 29 (2009) Issue 2.

We extend to arbitrary w and develop the link to geometric combinatorics:

J. De Loera, J. Rambau and F. Santos: Triangulations. Structures for Algorithms and
Applications, Algorithms and Computation in Mathematics 25, Springer Berlin, 2010.



Maximum Likelihood Estimation

Theorem

A log-concave maximum likelihood estimate p exists for all (X, w).
It is unique with probability 1. The concave function log(p) is a
tent function supported on the convex polytope P = conv(X).

Tent function means: piecewise linear and concave, supported on a
regular polyhedral subdivision of the configuration X of.n points in R9.



Tent Functions

Given points X = {x1,...,xn} and heights y1, ..., yn at these points, the tent function
hx,y RY — R is the smallest concave function such that hx,y(xi) > y; for all i. Thus,

p = exp(hx,y) for some height vector y € R".
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Two equivalent Optimization Problems:

n n
maximize, Z w; log(p(xi)) maximize, cgn Z wiyi
i=1 i=1
s.t. p is a density
and p is log-concave. s.t. /exp(hx’y(t))dt =1

INFINITE DIMENSIONAL FINITE DIMENSIONAL



LogConcDEAD

Example
Lletd=2,n=6w= %(1, 1,1,1,1,1), and fix the point configuration

X = ((0,0), (100,0), (0,100), (22,37), (43,22), (36,41) ).

Computed with the R package of Cule, Gramacy a
=] F

The optimal log-concave density p for the six data points in X with unit weights.
nd Samworth.



LogConcDEAD

Example
Letd=2,n=6 w= %(2,2,2, 1,4,1), and fix the point configuration

X = ((0,0), (100,0), (0,100), (22,37), (43,22), (36,41)).

D¢

The optimal log-concave density p for the six data points in X with non-unit weights.
Computed with the R package of Cule, Gramacy and Samworth.
= = = =

[m]



Secondary Polytope

The secondary polytope ¥(X) has dimension n—d—1 but lives in
R". Its faces are in bijection with the regular subdivisions of X.
The vertices of £(X) correspond to regular triangulations of X.
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I.M. Gel'fand, M.M. Kapranov and A.V. Zelevinsky: Discriminants,
Resultants and Multidimensional Determinants, Birkhauser, Boston, 1994.
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Samworth Body

The support function of the secondary polytope X(X) is
the p.l. function that measures the volume under the tent:

R" =R, y+— /Phx,y(t)dt.

The convex polyhedron dual to the secondary is unbounded:

(X)) = {yeR": /hx,y(t)dt <1}.
P
The Samworth body is the following continuous analogue:
SX) = {yeR": /exp(hx’y(t))dt < 1}.
P
Proposition

The Samworth body S(X) is a full-dimensional closed convex set in R".



Log-Concave Density Estimation

. is Linear Programming over the Samworth body:

Maximize w -y subject to y € S(X).

Proposition
This is equivalent to the unconstrained optimization problem

Maximize w -y — [,exp(hx,,(t))dt over all y € R"

Interpretation: the optimal value function of our convex optimization problem is the
Legendre-Fenchel transform of the convex function y — [, exp(hx ,(t))dt.



Barvinok meets Samworth

Lemma (Barvinok 1993)
Fix linear function ¢ : R? — R and a d-simplex o. Then

[ ettt)d = volo Zexp v [T — v,
g

J#i
where yo, y1, ..., Yq are the values of ¢ at the vertices of o.

Theorem (Cule, Samworth, Stewart 2008)
Let y € R" such that hx , induces a triangulation A of X. Then

vol(o) exp(yi)
exp(hx voll) explyi).
~/C Y UEA%O': HjEU\I(y’ )

Corollary

On the secondary cone of a fixed triangulation A, the Samworth
body S(X) consists of all y such that the right hand side is < 1.



Every Regular Subdivision Arises

Theorem

For every regular subdivision A of X, there exists an open subset
Up C R” such that, for every w € Up, the optimal solution p to
the optimization problem for (X, w) gives rise to the subdivision A.
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Six Points in the Plane /ﬁIB
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Fix the configuration | 5
X = {(07 0)7 (17 0)7 (27 1)7 (27 2)7(17 2)7 (07 1)}
; : 6 .\6 _
We sampled 100,000 vectors uniformly from the simplex {w € RZO > =1}
For each w, we computed the optimal y and the subdivision it induces:
0 35 46 24 15 13 26 25 14 36
30.5 5.95 5.85 5.84 5.83 5.75 5.70 3.01 3.90 3.87
1315 2646 1535 1335 2426 2446 1314 3536 1424 2636 1446 2535 1525
123 121 121 120 1.16 114 0.96 0.92 092 092 092 090 0.90
2526 1415 3646 2425 1336 1346 2635 1524 131415 131535 142446 242646
089 089 087 087 0.8 0.8 077 0.70 0.25 0.24 0.23 0.22
152535 263646 133536 242526 133646 252635 152425 141524 131446 263536
0.21 0.20 0.18 0.18 0.16 0.15 0.15 0.15 0.14

0.22



Every Tent Function Arises

Lemma
Let A be a regular triangulation, given by hx .« for some
y* € O0S(X). There exist weights w € RL, that induce y*.

Proof: The vector y* is the global maximizer of the function

n
ZW,'y; — /exp(hx7y(t))dt.
i=1
By taking the partial derivative with respect to y;, we find

0
w; = %/exp(hx’y*(t))dt

= Z vol(a)exp(y; Y H(y; — yi", j € o\i),
gEA:
i€o

where H(uy,...,uq) is a certain explicit function of d arguments.



A Symmetric Function

Proposition
The following expressions define the same function H : R? — R:

T et
d 1 d +Z

o H=(-1
(=1) upup - - - Ug Uj2 [T (uj — ui)

j=1
> hr(ul,...,ud)
H = —_— =
* ; (r+d+1)l

d d
e H = / (1—21‘,’) exp (Zu,’t;) dt; ...dty.
Xq i=1 i=1

This function is positive, increasing in each argument, and convex.

Here h, is the homogeneous symmetric function, and X, is the standard simplex.



Every Tent Function Arises

We characterize the normal cones of the Samworth body:

Theorem

Fix a vector y € 0S(X), let A be the regular subdivision of X that

is induced by hx , and A1, ..., Ay all regular triangulations of X

which refine A. Write w1, ..., w2 for their weight vectors in R"
with i-th coordinates seen two slides ago.

A vector of weights w € RZ, induces the heights y if and only if

w € Cone(w™, ..., whm),

Corollary

Fix y* = (c,c,...,c), where c = —log(vol(P)), so that exp(hx,,)
is a probability density. Then w™i is precisely the vertex of the
secondary polytope ¥.(X) given by the regular triangulation A;.



Four Points in the Plane

Let x1,x2,x3, x5 € R? be in convex position. Then X has two triangulations:

2
Ay = {124,234} Ay = {123,134}

Pick y € R*. If hx,, induces Aj, then the weight vector w?1 has coordinates

WlAl = viueH(y2 — y1,y4 — y1)
Wil = vioa€? H(y1 — y2,ya — y2) + v23a€? H(ys — yo, ya — )
W3A1 = v234€H(yo — y3,y4 — ¥3)
W4Al = viae H(y1 — ya,yo — ya) + vaza€”*H(y2 — ya, ¥3 — ya).

There is an analogous vector w22 for the other triangulation. If hx , induces the
flat subdivision A then w can be any positive linear combination of w1 and w?2.



Convex Bodies & ﬂ Z

Samworth body and its dual

Ay Ay

w

The secondary fan of X and the secondary polytope of X.



Unit weights

Theorem

Let X be a configuration of n = d + 2 points that span RY. If w = %(17 o1,
then the optimal density p is log-linear, and the optimal subdivision is trivial.

Example

Unit weights on the following configuration of five points

X ={(0,0), (40,0), (20, 40), (17, 10), (21, 15)}

Theorem

For any integer d > 2, there exists a configuration of n = d + 3 points in R?
for which the optimal subdivision with respect to unit weights is non-trivial.



Experiments

We sampled six i.i.d. points in R2 from four different distributions:

P Gaussian N(0, 1)

P Uniform

P Circular: (Uf cos(2mUy), Uf sin(27U,)), where Uy, Uy are i.i.d uniform on [0, 1], and a = 0.3

P Circular: (Uf cos(2mUy), Uf sin(27U,)), where Uy, U are i.i.d uniform on [0, 1], and a = 0.1

Subdivision: number of Convex Gaussian Uniform Circular Circular
3-gons 4-gons 5-gons 6-gons hull N(0,1) a=0.5 a=0.3 a=0.1

1 0 0 0 3 948 533 257 34
0 1 0 0 4 8781 6719 4596 1507
0 0 1 0 5 8209 9743 10554 8504
0 0 0 1 6 1475 2805 4495 9887
2 0 0 0 4 8 3 6 7
1 1 0 0 5 1 2 1 2
3 0 0 0 3 6 2 2 1
2 1 0 0 4 39 16 4 7
2 0 1 0 5 1 1 0 1
1 2 0 0 5 1 0 1 6
4 0 0 0 4 1 0 0 0
3 1 0 0 3 114 38 10 1
3 0 1 0 4 39 20 9 2
2 2 0 0 4 59 19 16 9
5 0 0 0 3 3 0 0 0
4 1 0 0 4 1 0 0 0
4 0 1 0 3 90 27 8 1
3 2 0 0 3 120 32 11 0
5 1 0 0 3 50 11 3 0
7 0 0 0 3 2 1 0 0




Open Problems

> Design a test statistic for log-concavity based on optimal A.

» What is the smallest size n of a configuration X in R whose
optimal subdivision with unit weights has at least ¢ cells?
(e.g. we showed n=d+3for c=2,d > 2.)

» Which subdivisions are realizable by points with unit weights?

» For a fixed w and a fixed combinatorial type of subdivision A,
study the semianalytic set of all configurations X such that A
is the optimal subdivision for the data (X, w).



